Null pointer exception when processing Linked List nodes - nullpointerexception

package LinkList2;
//import java.util.*;
public class Duplicates {
public static void removeDuplicates(LinkedListNode head)
{
LinkedListNode current = head;
while(current!= null && current.next!= null)
{
LinkedListNode curr = current;
while(curr!=null)
{
if(curr.next.data==current.data) //Getting error at this line
curr.next = curr.next.next;
else
curr = curr.next;
}
current = current.next;
}
}
public static void main(String args[])
{
LinkedListNode first = new LinkedListNode(0,null,null);
LinkedListNode head = first;
LinkedListNode second = first;
for(int i=1; i< 8; i++)
{
second = new LinkedListNode(i%2, null, null);
first.setNext(second);
second.setPrevious(first);
}
System.out.println(head.printForward());
removeDuplicates(head);// Getting error at this line
}
}
Getting null pointer exception in the above code. When I try to run the above code, it gives null pointer exception.
Please help me with my mistake.
Below is the implementation of LinkList where all the methods are defined
class LinkedListNode {
public LinkedListNode next;
public LinkedListNode prev;
public LinkedListNode last;
public int data;
public LinkedListNode(int d, LinkedListNode n, LinkedListNode p) {
data = d;
setNext(n);
setPrevious(p);
}
public void setNext(LinkedListNode n) {
next = n;
if (this == last) {
last = n;
}
if (n != null && n.prev != this) {
n.setPrevious(this);
}
}
public void setPrevious(LinkedListNode p) {
prev = p;
if (p != null && p.next != this) {
p.setNext(this);
}
}
public String printForward() {
if (next != null) {
return data + "->" + next.printForward();
} else {
return ((Integer) data).toString();
}
}
public LinkedListNode clone() {
LinkedListNode next2 = null;
if (next != null) {
next2 = next.clone();
}
LinkedListNode head2 = new LinkedListNode(data, next2, null);
return head2;
}
}

You are getting an exception just because of the following condition:
while(curr != null)
Replace it with while(curr != null && curr.next != null) this way you can check if you have the next element.
Hope this helps.

The problem is that here:
while(curr != null)
{
if(curr.next.data==current.data) //Getting error at this line
curr.next = curr.next.next;
else
curr = curr.next;
}
You are accessing the curr.next.data where you are not checking if that node is null or not. This through your NullPointerException.
To fix your problem is to check on the while loop, if the .next is also not null.
while(curr != null && curr.next != null)
{
if(curr.next.data==current.data) //Getting error at this line
curr.next = curr.next.next;
else
curr = curr.next;
}
In other words, you are not checking if your next node is actually the end of the linked list (i.e null). If you need in your program logic to handle this separately, then you should remove the check from the while loop, and implement this check differently.

Related

dim trying to write a reversing line with jgrasp and continue to receive errors, anyone see what im doing wrong?

my assignment involves using recursive method. Write a program that reverses a LinkedList. This is the code i have done below, can anyone see what i am doing wrong, thank you very much!
PS: this is done in jGRASP
// Java program for reversing the linked list
class MyLinkedList {
static Node head;
static class Node {
int data;
Node next;
Node(int d) {
data = d;
next = null;
}
}
/* Function to reverse the linked list */
Node reverse(Node node) {
Node prev = null;
Node current = node;
Node next = null;
while (current != null) {
next = current.next;
current.next = prev;
prev = current;
current = next;
}
node = prev;
return node;
}
// prints content of double linked list
void printList(Node node) {
while (node != null) {
System.out.print(node.data + " ");
node = node.next;
}
}
public static void main(String[] args) {
MyLinkedList list = new MyLinkedList();
list.head = new Node(85);
list.head.next = new Node(15);
list.head.next.next = new Node(4);
list.head.next.next.next = new Node(20);
System.out.println("Given Linked list");
list.printList(head);
head = list.reverse(head);
System.out.println("");
System.out.println("Reversed linked list ");
list.printList(head);
}
}

Delete CustomXml files -docx4j

How to delete custom XML files with its property and relationship files?, I've used clear() method. But it's not working. Help me out.
wordMLPackage.getCustomXmlDataStorageParts().clear();
https://github.com/plutext/docx4j/blob/master/docx4j-core/src/main/java/org/docx4j/Docx4J.java#L643 shows you how to do this. To remove them all, it would be:
protected static void removeDefinedCustomXmlParts(WordprocessingMLPackage wmlPackage) {
List<PartName> partsToRemove = new ArrayList<PartName>();
RelationshipsPart relationshipsPart = wmlPackage.getMainDocumentPart().getRelationshipsPart();
List<Relationship> relationshipsList = ((relationshipsPart != null) &&
(relationshipsPart.getRelationships() != null) ?
relationshipsPart.getRelationships().getRelationship() : null);
Part part = null;
if (relationshipsList != null) {
for (Relationship relationship : relationshipsList) {
if (Namespaces.CUSTOM_XML_DATA_STORAGE.equals(relationship.getType())) {
part = relationshipsPart.getPart(relationship);
partsToRemove.add(part.getPartName());
}
}
}
if (!partsToRemove.isEmpty()) {
for (int i=0; i<partsToRemove.size(); i++) {
relationshipsPart.removePart(partsToRemove.get(i));
}
}
}

BST, is it possible to find next lowest in O(lg N)?

The TreeNode class is defined with only left and right child.
public class TreeNode {
public int val;
public TreeNode left, right;
public TreeNode(int val) {
this.val = val;
}
}
My code finds the next lowest node in O(n). I was wondering if it's possible to find it in lg(N) given that the node doesn't have a pointer to its parent node.
// run time O(n)
public static Integer findNextLowest(TreeNode root, int target) {
Stack<TreeNode> stack = new Stack<>();
TreeNode cur = root;
while (cur != null || stack.size() > 0) {
while (cur != null) {
stack.push(cur);
cur = cur.right;
}
TreeNode node = stack.pop();
if (node.val < target) return node.val; // found the next lowest
cur = node.left;
}
return null;
}
private static TreeNode findNextLowest(TreeNode root, int target){
TreeNode node = root;
TreeNode res = null;
while(node != null){
while(node != null && node.val >= target){
node = node.left;
}
while(node != null && node.val < target){
res = node;
node = node.right;
}
}
return res;
}
No, because you haven't implemented a Binary Search Tree, just a Binary Tree.
A BST will constrain its values such that left.val < val < right.val, so you can do
// run time O(log(n)) if cur is balanced
public static Integer findNextLowest(TreeNode cur, int target) {
if (target < cur.val) { return cur.left != null ? findNextLowest(cur.left, target) : null; }
if (curr.right != null)
{
Integer result = findNextLowest(cur.right, target);
if (result != null) { return result; }
}
return cur.val;
}
You should use something like a R-B tree to ensure it is balanced

addFirst(E e) Doubly Linked List (Null Pointer Exception)

import java.util.*;
public class MyTwoWayLinkedList<E> extends java.util.AbstractSequentialList<E> {
private Node<E> head, tail;
private int size = 0;
private List<E> list;
/** Create a default list */
public MyTwoWayLinkedList() {
list = new LinkedList<E>();
}
public MyTwoWayLinkedList(E[] objects) {
list = new LinkedList<E>();
for (int i = 0; i < objects.length; i++)
add(objects[i]);
}
/** Return the head element in the list */
public E getFirst() {
if (size == 0) {
return null;
}
else {
return head.element;
}
}
/** Return the last element in the list */
public E getLast() {
if (size == 0) {
return null;
}
else {
return tail.element;
}
}
/** Add an element to the beginning of the list */
public void addFirst(E e) {
Node<E> newNode = new Node<E>(e); // Create a new node
newNode.next = head; // link the new node with the head
head.previous = newNode; //link the old node with new head
head = newNode; // head points to the new node
size++; // Increase list size
if (tail == null) // the new node is the only node in list
tail = head;
}
/** Add an element to the end of the list */
public void addLast(E e) {
Node<E> newNode = new Node<E>(e); // Create a new for element e
if (tail == null) {
head = tail = newNode; // The new node is the only node in list
}
else {
tail.next = newNode;// Link the new with the last node
newNode.previous = tail;
tail = tail.next; // tail now points to the last node
}
size++; // Increase size
}
#Override /** Add a new element at the specified index
* in this list. The index of the head element is 0 */
public void add(int index, E e) {
if (index == 0) {
addFirst(e);
}
else if (index >= size) {
addLast(e);
}
else {
Node<E> current = tail;
for (int i = size - 1; i > index; i--) {
current = current.previous;
}
Node<E> temp = current.next;
current.next = new Node<E>(e);
(current.next).previous = current;
(current.next).next = temp;
size++;
}
}
/** Remove the head node and
* return the object that is contained in the removed node. */
public E removeFirst() {
if (size == 0) {
return null;
}
else {
Node<E> temp = head;
head = head.next;
head.previous = null;
size--;
if (head == null) {
tail = null;
}
return temp.element;
}
}
/** Remove the last node and
* return the object that is contained in the removed node. */
public E removeLast() {
if (size == 0) {
return null;
}
else if (size == 1) {
Node<E> temp = head;
head = tail = null;
size = 0;
return temp.element;
}
else {
Node<E> temp = tail;
tail = tail.previous;
tail.next = null;
size--;
return temp.element;
}
}
#Override /** Remove the element at the specified position in this
* list. Return the element that was removed from the list. */
public E remove(int index) {
if (index < 0 || index >= size) {
return null;
}
else if (index == 0) {
return removeFirst();
}
else if (index == size - 1) {
return removeLast();
}
else {
Node<E> previous = tail;
for (int i = size - 1; i > index; i--) {
previous = previous.previous;
}
Node<E> current = previous.next;
(current.next).previous = previous;
previous.next = current.next;
size--;
return current.element;
}
}
#Override /** Override toString() to return elements in the list */
public String toString() {
StringBuilder result = new StringBuilder("[");
Node<E> current = tail;
for (int i = size - 1; i > 0; i--) {
result.append(current.element);
current = current.previous;
if (current != null) {
result.append(" ,"); // Separate two elements with a comma
}
else {
result.append("["); // Insert the closing ] in the string
}
}
return result.toString();
}
#Override /** Clear the list */
public void clear() {
size = 0;
head = tail = null;
}
#Override /** Override iterator() defined in Iterable */
public ListIterator<E> listIterator() {
Node<E> current = head; // Current index
return list.listIterator();
}
#Override /** Override iterator() defined in Iterable */
public ListIterator<E> listIterator(int index) {
Node<E> current = head; // Current index
for (int i = 0; i < index; i++) { // sets current int to the parameter
current = current.next;
}
return list.listIterator();
}
#Override
public int size()
{
return size;
}
public class Node<E> {
E element;
Node<E> next;
Node<E> previous;
public Node(E element) {
this.element = element;
}
}
}
This is my original class, I will include my test case below but first let me explain my problem. I am trying to create a Doubly linked list and iterate backwards through it. However I am getting a Null Pointer Exception by just adding elements to the list. I have looked over the section of code for my addFirst method for about 2 hours now and don't see any logic errors(doesn't mean there arent any), please help!
Here is my test case as promised.
public class TestMyLinkedList {
/** Main method */
public static void main(String[] args) {
// Create a list for strings
MyTwoWayLinkedList<String> list = new MyTwoWayLinkedList<String>();
// Add elements to the list
list.add("America"); // Add it to the list
System.out.println("(1) " + list);
list.add(0, "Canada"); // Add it to the beginning of the list
System.out.println("(2) " + list);
list.add("Russia"); // Add it to the end of the list
System.out.println("(3) " + list);
list.addLast("France"); // Add it to the end of the list
System.out.println("(4) " + list);
list.add(2, "Germany"); // Add it to the list at index 2
System.out.println("(5) " + list);
list.add(5, "Norway"); // Add it to the list at index 5
System.out.println("(6) " + list);
list.add(0, "Poland"); // Same as list.addFirst("Poland")
System.out.println("(7) " + list);
// Remove elements from the list
list.remove(0); // Same as list.remove("Australia") in this case
System.out.println("(8) " + list);
list.remove(2); // Remove the element at index 2
System.out.println("(9) " + list);
list.remove(list.size() - 1); // Remove the last element
System.out.print("(10) " + list + "\n(11) ");
for (String s: list)
System.out.print(s.toUpperCase() + " ");
list.clear();
System.out.println("\nAfter clearing the list, the list size is "
+ list.size());
}
}
I'm not completely sure why you are using a LinkedList within your own implementation of a Double Linked List. In regards to your question about your addFirst method however, I have the following comments and an example of how I would approach this solution.
Head is null when you call the addFirst method.
Head has not been initialized as a new Node.
Therefore newNode.next = head; is actually newNode.next = null; There is your null pointer exception, I would imagine!
public void addFirst (E e)
{
Node<E> newNode = new Node<E>(e); //create new node
if (head != null){ //if head exists
newNode.next = head; //the new node's next link becomes the old head
}
head = newNode; //the new head is the new node
if (tail == null){ //if the tail is non existent ie head the only object in list
tail = head; //the head and the tail are the same
head.next = tail; //the 'next' value of head will be tail
}
head.prev = tail; //the previous node to head will always be tail
size++;
}
}

Exporting a non public Type through public API

I am trying to follow Trees tutorial at: http://cslibrary.stanford.edu/110/BinaryTrees.html
Here is the code I have written so far:
package trees.bst;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
/**
*
* #author sachin
*/
public class BinarySearchTree {
Node root = null;
class Node {
Node left = null;
Node right = null;
int data = 0;
public Node(int data) {
this.left = null;
this.right = null;
this.data = data;
}
}
public void insert(int data) {
root = insert(data, root);
}
public boolean lookup(int data) {
return lookup(data, root);
}
public void buildTree(int numNodes) {
for (int i = 0; i < numNodes; i++) {
int num = (int) (Math.random() * 10);
System.out.println("Inserting number:" + num);
insert(num);
}
}
public int size() {
return size(root);
}
public int maxDepth() {
return maxDepth(root);
}
public int minValue() {
return minValue(root);
}
public int maxValue() {
return maxValue(root);
}
public void printTree() { //inorder traversal
System.out.println("inorder traversal:");
printTree(root);
System.out.println("\n--------------");
}
public void printPostorder() { //inorder traversal
System.out.println("printPostorder traversal:");
printPostorder(root);
System.out.println("\n--------------");
}
public int buildTreeFromOutputString(String op) {
root = null;
int i = 0;
StringTokenizer st = new StringTokenizer(op);
while (st.hasMoreTokens()) {
String stNum = st.nextToken();
int num = Integer.parseInt(stNum);
System.out.println("buildTreeFromOutputString: Inserting number:" + num);
insert(num);
i++;
}
return i;
}
public boolean hasPathSum(int pathsum) {
return hasPathSum(pathsum, root);
}
public void mirror() {
mirror(root);
}
public void doubleTree() {
doubleTree(root);
}
public boolean sameTree(BinarySearchTree bst) { //is this tree same as another given tree?
return sameTree(this.root, bst.getRoot());
}
public void printPaths() {
if (root == null) {
System.out.println("print path sum: tree is empty");
}
List pathSoFar = new ArrayList();
printPaths(root, pathSoFar);
}
///-------------------------------------------Public helper functions
public Node getRoot() {
return root;
}
//Exporting a non public Type through public API
///-------------------------------------------Helper Functions
private boolean isLeaf(Node node) {
if (node == null) {
return false;
}
if (node.left == null && node.right == null) {
return true;
}
return false;
}
///-----------------------------------------------------------
private boolean sameTree(Node n1, Node n2) {
if ((n1 == null && n2 == null)) {
return true;
} else {
if ((n1 == null || n2 == null)) {
return false;
} else {
if ((n1.data == n2.data)) {
return (sameTree(n1.left, n2.left) && sameTree(n1.right, n2.right));
}
}
}
return false;
}
private void doubleTree(Node node) {
//create a copy
//bypass the copy to continue looping
if (node == null) {
return;
}
Node copyNode = new Node(node.data);
Node temp = node.left;
node.left = copyNode;
copyNode.left = temp;
doubleTree(copyNode.left);
doubleTree(node.right);
}
private void mirror(Node node) {
if (node == null) {
return;
}
Node temp = node.left;
node.left = node.right;
node.right = temp;
mirror(node.left);
mirror(node.right);
}
private void printPaths(Node node, List pathSoFar) {
if (node == null) {
return;
}
pathSoFar.add(node.data);
if (isLeaf(node)) {
System.out.println("path in tree:" + pathSoFar);
pathSoFar.remove(pathSoFar.lastIndexOf(node.data)); //only the current node, a node.data may be duplicated
return;
} else {
printPaths(node.left, pathSoFar);
printPaths(node.right, pathSoFar);
}
}
private boolean hasPathSum(int pathsum, Node node) {
if (node == null) {
return false;
}
int val = pathsum - node.data;
boolean ret = false;
if (val == 0 && isLeaf(node)) {
ret = true;
} else if (val == 0 && !isLeaf(node)) {
ret = false;
} else if (val != 0 && isLeaf(node)) {
ret = false;
} else if (val != 0 && !isLeaf(node)) {
//recurse further
ret = hasPathSum(val, node.left) || hasPathSum(val, node.right);
}
return ret;
}
private void printPostorder(Node node) { //inorder traversal
if (node == null) {
return;
}
printPostorder(node.left);
printPostorder(node.right);
System.out.print(" " + node.data);
}
private void printTree(Node node) { //inorder traversal
if (node == null) {
return;
}
printTree(node.left);
System.out.print(" " + node.data);
printTree(node.right);
}
private int minValue(Node node) {
if (node == null) {
//error case: this is not supported
return -1;
}
if (node.left == null) {
return node.data;
} else {
return minValue(node.left);
}
}
private int maxValue(Node node) {
if (node == null) {
//error case: this is not supported
return -1;
}
if (node.right == null) {
return node.data;
} else {
return maxValue(node.right);
}
}
private int maxDepth(Node node) {
if (node == null || (node.left == null && node.right == null)) {
return 0;
}
int ldepth = 1 + maxDepth(node.left);
int rdepth = 1 + maxDepth(node.right);
if (ldepth > rdepth) {
return ldepth;
} else {
return rdepth;
}
}
private int size(Node node) {
if (node == null) {
return 0;
}
return 1 + size(node.left) + size(node.right);
}
private Node insert(int data, Node node) {
if (node == null) {
node = new Node(data);
} else if (data <= node.data) {
node.left = insert(data, node.left);
} else {
node.right = insert(data, node.right);
}
//control should never reach here;
return node;
}
private boolean lookup(int data, Node node) {
if (node == null) {
return false;
}
if (node.data == data) {
return true;
}
if (data < node.data) {
return lookup(data, node.left);
} else {
return lookup(data, node.right);
}
}
public static void main(String[] args) {
BinarySearchTree bst = new BinarySearchTree();
int treesize = 5;
bst.buildTree(treesize);
//treesize = bst.buildTreeFromOutputString("4 4 4 6 7");
treesize = bst.buildTreeFromOutputString("3 4 6 3 6");
//treesize = bst.buildTreeFromOutputString("10");
for (int i = 0; i < treesize; i++) {
System.out.println("Searching:" + i + " found:" + bst.lookup(i));
}
System.out.println("tree size:" + bst.size());
System.out.println("maxDepth :" + bst.maxDepth());
System.out.println("minvalue :" + bst.minValue());
System.out.println("maxvalue :" + bst.maxValue());
bst.printTree();
bst.printPostorder();
int pathSum = 10;
System.out.println("hasPathSum " + pathSum + ":" + bst.hasPathSum(pathSum));
pathSum = 6;
System.out.println("hasPathSum " + pathSum + ":" + bst.hasPathSum(pathSum));
pathSum = 19;
System.out.println("hasPathSum " + pathSum + ":" + bst.hasPathSum(pathSum));
bst.printPaths();
bst.printTree();
//bst.mirror();
System.out.println("Tree after mirror function:");
bst.printTree();
//bst.doubleTree();
System.out.println("Tree after double function:");
bst.printTree();
System.out.println("tree size:" + bst.size());
System.out.println("Same tree:" + bst.sameTree(bst));
BinarySearchTree bst2 = new BinarySearchTree();
bst2.buildTree(treesize);
treesize = bst2.buildTreeFromOutputString("3 4 6 3 6");
bst2.printTree();
System.out.println("Same tree:" + bst.sameTree(bst2));
System.out.println("---");
}
}
Now the problem is that netbeans shows Warning: Exporting a non public Type through public API for function getRoot().
I write this function to get root of tree to be used in sameTree() function, to help comparison of "this" with given tree.
Perhaps this is a OOP design issue... How should I restructure the above code that I do not get this warning and what is the concept I am missing here?
The issue here is that some code might call getRoot() but won't be able to use it's return value since you only gave package access to the Node class.
Make Node a top level class with its own file, or at least make it public
I don't really understand why you even created the getRoot() method. As long as you are inside your class you can even access private fields from any other object of the same class.
So you can change
public boolean sameTree(BinarySearchTree bst) { //is this tree same as another given tree?
return sameTree(this.root, bst.getRoot());
}
to
public boolean sameTree(BinarySearchTree bst) { //is this tree same as another given tree?
return sameTree(this.root, bst.root);
}
I would also add a "short path" for the case you pass the same instance to this method:
public boolean sameTree(BinarySearchTree bst) { //is this tree same as another given tree?
if (this == bst) {
return true;
}
return sameTree(this.root, bst.root);
}