How to auto prove simple inequality of real numbers in Coq? - automation

Is there a way to automatically prove simple inequalities like 1/2 >= 0?, i.e.
Require Export Coq.Reals.RIneq.
Local Open Scope Z_scope.
Local Open Scope R_scope.
Example test: /2 >= 0.
I haven't much experience with ring or field, and I am having trouble with even proving simple equalities such as 1/2 = 2/4.
What I am looking for is something like omega but works for real numbers and inequalities.

The tools you are looking for are described in the chapter on Omega of the reference manual and deal with various arithmetic goals over ordered rings: (non)-linear integer arithmetic, and linear rational / real arithmetic.
They are defined in the Psatz module and may require you to install some external solvers. In this case, lra does not (AFAICT) have external dependencies and discharges the test goal.

Related

Is it possible to get the native CPU size of an integer in Rust?

For fun, I'm writing a bignum library in Rust. My goal (as with most bignum libraries) is to make it as efficient as I can. I'd like it to be efficient even on unusual architectures.
It seems intuitive to me that a CPU will perform arithmetic faster on integers with the native number of bits for the architecture (i.e., u64 for 64-bit machines, u16 for 16-bit machines, etc.) As such, since I want to create a library that is efficient on all architectures, I need to take the target architecture's native integer size into account. The obvious way to do this would be to use the cfg attribute target_pointer_width. For instance, to define the smallest type which will always be able to hold more than the maximum native int size:
#[cfg(target_pointer_width = "16")]
type LargeInt = u32;
#[cfg(target_pointer_width = "32")]
type LargeInt = u64;
#[cfg(target_pointer_width = "64")]
type LargeInt = u128;
However, while looking into this, I came across this comment. It gives an example of an architecture where the native int size is different from the pointer width. Thus, my solution will not work for all architectures. Another potential solution would be to write a build script which codegens a small module which defines LargeInt based on the size of a usize (which we can acquire like so: std::mem::size_of::<usize>().) However, this has the same problem as above, since usize is based on the pointer width as well. A final obvious solution is to simply keep a map of native int sizes for each architecture. However, this solution is inelegant and doesn't scale well, so I'd like to avoid it.
So, my questions: is there a way to find the target's native int size, preferably before compilation, in order to reduce runtime overhead? Is this effort even worth it? That is, is there likely to be a significant difference between using the native int size as opposed to the pointer width?
It's generally hard (or impossible) to get compilers to emit optimal code for BigNum stuff, that's why https://gmplib.org/ has its low level primitive functions (mpn_... docs) hand-written in assembly for various target architectures with tuning for different micro-architecture, e.g. https://gmplib.org/repo/gmp/file/tip/mpn/x86_64/core2/mul_basecase.asm for the general case of multi-limb * multi-limb numbers. And https://gmplib.org/repo/gmp/file/tip/mpn/x86_64/coreisbr/aors_n.asm for mpn_add_n and mpn_sub_n (Add OR Sub = aors), tuned for SandyBridge-family which doesn't have partial-flag stalls so it can loop with dec/jnz.
Understanding what kind of asm is optimal may be helpful when writing code in a higher level language. Although in practice you can't even get close to that so it sometimes makes sense to use a different technique, like only using values up to 2^30 in 32-bit integers (like CPython does internally, getting the carry-out via a right shift, see the section about Python in this). In Rust you do have access to add_overflow to get the carry-out, but using it is still hard.
For practical use, writing Rust bindings for GMP is probably your best bet, unless that already exists.
Using the largest chunks possible is very good; on all current CPUs, add reg64, reg64 has the same throughput and latency as add reg32, reg32 or reg8. So you get twice as much work done per unit. And carry propagation through 64 bits of result in 1 cycle of latency.
(There are alternate ways to store BigInteger data that can make SIMD useful; #Mysticial explains in Can long integer routines benefit from SSE?. e.g. 30 value bits per 32-bit int, allowing you to defer normalization until after a few addition steps. But every use of such numbers has to be aware of these issues so it's not an easy drop-in replacement.)
In Rust, you probably want to just use u64 regardless of the target, unless you really care about small-number (single-limb) performance on 32-bit targets. Let the compiler build u64 operations for you out of add / adc (add with carry).
The only thing that might need to be ISA-specific is if u128 is not available on some targets. You want to use 64 * 64 => 128-bit full multiply as your building block for multiplication; if the compiler can do that for you with u128 then that's great, especially if it inlines efficiently.
See also discussion in comments under the question.
One stumbling block for getting compilers to emit efficient BigInt addition loops (even inside the body of one unrolled loop) is writing an add that takes a carry input and produces a carry output. Note that x += 0xff..ff + carry=1 needs to produce a carry out even though 0xff..ff + 1 wraps to zero. So in C or Rust, x += y + carry has to check for carry out in both the y+carry and the x+= parts.
It's really hard (probably impossible) to convince compiler back-ends like LLVM to emit a chain of adc instructions. An add/adc is doable when you don't need the carry-out from adc. Or probably if the compiler is doing it for you for u128.overflowing_add
Often compilers will turn the carry flag into a 0 / 1 in a register instead of using adc. You can hopefully avoid that for at least pairs of u64 in addition by combining the input u64 values to u128 for u128.overflowing_add. That will hopefully not cost any asm instructions because a u128 already has to be stored across two separate 64-bit registers, just like two separate u64 values.
So combining up to u128 could just be a local optimization for a function that adds arrays of u64 elements, to get the compiler to suck less.
In my library ibig what I do is:
Select architecture-specific size based on target_arch.
If I don't have a value for an architecture, select 16, 32 or 64 based on target_pointer_width.
If target_pointer_width is not one of these values, use 64.

Maximum Likelihood Estimation of a log function with sevaral parameters

I am trying to find out the parameters for the function below:
$$
\log L(\alpha,\beta,v) = v/\beta(e^{-\beta T} -1) + \alpha/\beta \sum_{i=1}^{n}(e^{-\beta(T-t_i)} -1) + \sum_{i=1}^{N}log(v e^{-\beta t_i} + \alpha \sum_{j=1}^{jmax(t_i)} e^{-\beta(t_i - t_j)}).
$$
However, the conventional methods like fmin, fminsearch are not converging properly. Any suggestions on any other methods or open libraries which I can use?
I was trying CVXPY, but they don't support the division by a variable in the expression.
The problem may not be convex (I have not verified this but it could be why CVXPY refused it). We don't have the data so we cannot try things out, but I can give some general advice:
Provide exact gradients (and 2nd derivatives if needed) or use a modeling system with automatic differentiation. Especially first derivatives should be preferably quite precise. With finite differences you may lose half the precision.
Provide a good starting point. May be using an alternative estimation method.
Some solvers can use bounds on the variables to restrict the feasible region where functions will be evaluated. This can be used to restrict the search to interesting areas only and also to protect operations like division and log functions.

Using fractional exponent with bc

bc, a Linux command-line calculator, is proficient enough to calculate
3^2
9
Even a negative exponent doesn't confuse it:
3^-2
0.11111
Yet it fails when it encounters
9^0.5
Runtime warning (func=(main), adr=8): non-zero scale in exponent
How could it be that bc can't handle this?
And what does the error message mean?
Yes, I've read this and the solution given there:
e(0.5*l(9))
2.99999999999999999998
And yes, it is no good because of precision loss and
A calculator is supposed to solve expressions. You are not supposed to
make life easier for the calculator, it is supposed to be the other
way around...
This feature was designed to encourage users to write their own functions. Making it a unique calculator that requires a user-defined function to calculate a square root.
It doesn't really bother me to write a function for tangents or cotangents as it looks pretty straightforward given s(x) and c(x). But in my opinion calculating a square root through a user-defined function is a bit too much.
Why anyone uses bc if there's Python out there? Speed?
In bc, b must be an integer in a ^ b. However you can add your own functions to bc like this:
create a file ~/.bcrc, add the following function to it:
define pow(a, b) {
if (scale(b) == 0) {
return a ^ b;
}
return e(b*l(a));
}
then you can start bc as follows:
bc ~/.bcrc -l
so you can use function pow to do such calculation.
See more here, you can add some more functions to bc.
bc is very basic and more complex functions not provided by the "math extension" must be implemented in the language itself: it has all you need to do it; in particular "power" is a common example even on wikipedia.
But you may be also interested in reading for example this answer here on SO.

Does system C support tri-state logic?

Does System C support tri-state logic? That is, bits that can get 0, 1 or X, where X means "unknown"?
If it does, does it also support vectors that can contain Xes, including logic and arithmetic operations?
Here is what you need:
http://www.asic-world.com/systemc/data_types2.html
http://en.wikipedia.org/wiki/SystemC#Data_types
It does not have tri-state variables, but quad-state (is that correct? :P) variables (0,1,X,Z). More about it in the above links. It also supports vectors of those variables.
Hope I helped you a little bit :)
Yeah, you're looking for the sc_logic and sc_lv types which are 4 state variables: 0, 1, X, and Z. Pay attention to how they interact when you resolve them together. There's a nice tables on the asic-world.com site taken directly from the SystemC User Manual.
Note though that this doesn't work like in Verilog where X can also act as a wildcard. I had to build my own function to add that functionality.

How do I process enormous numbers? [duplicate]

This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
Most efficient implementation of a large number class
Suppose I needed to calculate 2^150000. Obviously that number is going to exceed the size of an int, float, or double. How can I make a data type that allows normal math functions but exceeds the basic number types?
If this is a "depends which language you use" kind of deal. I will say C#.
See
Most efficient implementation of a large number class
for some leads.
If C# is not cast in stone, and you want something that just works out of the box, then there are several options. The one I know best is Python, but I think that languages like Scheme and Ruby support large numbers, too.
Python: 2**150000. Prints the result after about 1 second.
If you want free mathematics software, look at Maxima or Sage.
You might also consider using Frink, which is a language with the native capability of dealing with measurement units.
It computes 2^150000 without difficulty, deals with fractions (e.g. 1/3+2/5 --> 11/15), computes 3 meters + 2 inch --> 3.0508 m and is a full programming language.
Frink - Copyright 2000-2008 Alan Eliasen, eliasen#mindspring.com
http://futureboy.us/frinkdocs/
Several languages have built in support for arbitrary large numbers. You could use Mathematica, for example. I tried your example in Mathematica, and the result has 45,155 digits. I tried the same example with bc on a Unix machine. bc supports extended precision, but not that extended; it bombed on the example.
Lisp is your friend. Default biginteger numbers.
I find it very frustrating to use a language without arbitrarily large numbers: it seems nonsensical to be able to use ordinary operators like addition on most numbers, but to have to switch to method calls on a BigInt instance simply because of its size.
A whole bunch of languages have more complete numeric towers, and seamlessly coerce when needed; e.g., Allegro Common Lisp evaluates and prints all 45,155 digits of (expt 2 150000) in 1ms.
cl-user(2): (time (expt 2 150000))
; cpu time (non-gc) 0 msec user, 0 msec system
; cpu time (gc) 0 msec user, 0 msec system
; cpu time (total) 0 msec user, 0 msec system
; real time 1 msec
; space allocation:
; 2 cons cells, 18,784 other bytes, 0 static bytes
There is a product in C called calc which is an arbitrary precision calculator. I used it once when working as a researcher and found it fairly straightforward to use...
http://sourceforge.net/projects/calc/
It can be programmed for difficult or long calculations and can accept arguments from the command line. In interactive mode, it accepts one command at a time, and displays the answer.
Ordinarily the commands are simply expressions such as:
3 * (4 + 1)
and calc will print:
15
Calc does the arithmetic operators +, -, /, * as well as ^ (exponentiation), % (modulus) and // (integer divide).
For example:
3 * 19 ^ 43 - 1
will produce:
29075426613099201338473141505176993450849249622191102976
Calc values can be VERY large. For example:
2 ^ 23209 - 1
will print:
402874115778988778181873329071 ... loads of digits ... 3779264511
Hope this helps...
I don't know C# but I do know the Ruby programming language has the BigDemical class that seems to allow numbers of unlimited size.
Python has a bignum library. If you need to implement a bignum library in another language you can at least use the Python one as reference for validating your work. Note that bignums have a few implementation gotchas that aren't immediately obvious if you don't know what you're looking for.