Lookup tables implementation - one table or separate tables [closed] - sql

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 7 years ago.
Improve this question
I am going to implement several lookup tables in a system. In general all lookup tables have the same structure like
id, name, value, rank, active
We are using AngularJS as front-end and Web API/Entity framework as backend in this project
There are some options on my mind
Option 1 - Create a set of lookup tables with the same structure
e.g. LKRegion, LKStatus, LKPeriod, LKState, LKDepartment, etc.
This option is a traditional design. The data schema is structural and easy to understand. It is easy to implement/enforce foreign key integrity. But you have to create separated web methods to handle CRUD actions. You have to repeat the same thing if you have another lookup table to add in the future.
Option 2 - Create a big lookup table by adding an extra column called LookupType to identify the lookup group
This option reduces the number of tables. Make the lookup table easy to maintain and retrieve (e.g. One schema, one web method can handle all general lookup CRUD actions). But the foreign key integrity is a little bit loose due to the LookupType.
Please share your preference and the tell me why. I would like to get the best practise on this implementation. Thank you!

I'll defend Option 2, although in general, you want Option 1. As others have mentioned, Option 1 is the simpler method and easily allows foreign key relationships.
There are some circumstances where having a single reference table is handy. For instance, if you are writing a system that will support multiple human languages, then having a single reference table with the names of things is much simpler than a zillion reference tables spread throughout the database. Or, I suppose, you could have very arcane security requirements that require complex encryption algorithms -- and dealing with a single table is easier.
Nevertheless, referential integrity on reference tables is important. Some databases have non-trigger-based mechanisms that will support referential integrity for one table (foreign keys and computed columns in Oracle and SQL Server). These mechanisms are a bit cumbersome but they do allow different foreign key references to a single table. And, you can always enforce referential integrity using triggers, although I don't recommend that approach.
As with most things that databases do, there isn't a right answer. There is a generally accepted answer that works/is correct in most cases (Option 1). The second option would only be desirable under limited circumstances depending on system requirements.

I suggest that :
A. Follow the organization standard if this is an enterprise system (some may laugh loud on this, I know). If such a thing exists, it would certainly promote individual tables.
B. Use Enums or 1 aggregated lookup table for programming level lookups only (such as error messages, etc,) if you must only. Any lookup data for business related data should be (in my opinion) be in a separate table for the following reasons at least:
When you have separate tables, you need to use the correct table name when you join and not use a code column of the reference table. This makes writing queries less error prone. Writing "Select ... Where (TableID=12 and State="NY") AND (TableId=133 and Country="USA")"...style of coding is quite error prone during development. This is the major issue for me from coding perspective.
RI errors on inserts and updates may be ambiguous when there is more 1 than reference to the lookup in the row being inserted or updated.
In some cases, the a lookup table may have self references (relationships). For example, a Geographical location can be described as a hierarchy which would add more confusion to the model.
The relationships (references) could loose meaning in your database. You will find that almost every table in your system is linked to this one table. It some how will not make sense.
If you ever decided to allow the user to perform ad-hoc reporting, it would be difficult for them to use codes for lookup tables instead of names.
I feel that the 1 table approach breaks Normalization concepts - Can't prove it now though.
An disadvantage, is that you may need to build an indexes on PKs and FKs for some (or all) of the separate tables. However, in the world of powerful database available today, this may not be a big deal.
There are plenty of discussion in the net that I should have read before answering your question, however I present some of the links if you care to take a look at some yourself:
Link 1, Link 2, Link 3, Link 4, Link 5...

Avoid option 2 at all costs, go with option 1 without even thinking about it.(*)
Referential integrity is far too important to compromise in favour of virtually any other concern.
If there you go, only pain will you find.
If you want to reduce duplication, implement a list of services in your web-api implementation language (java?) and parametrize each service with the name of the lookup table to work with.
Edit
(*) It was wrong on my behalf to say "without even thinking about it". Of course, think about it. If need be, go ahead and even post a question on stackoverflow about it. Thinking is good, and Gordon Linoff's answer above demonstrates this nicely.

Related

Database Design Without Foreign Keys

After having worked at various employers I've noticed a trend of "bad" database design with some of these companies - primarily the exclusion of Foreign Keys Constraints. It has always bugged me that these transactional systems didn't have FK's, which would've promoted referential integrity.
Are there any scenarios, in transactional systems, whereby the omission of FK's would be beneficial?
Has anyone else experienced this, if so what was the outcome?
What should one do if they're presented with this scenario and their asked to maintain/enhance the system?
I cannot think of any scenario where, if two columns have a dependency, they should not have a FK constraint set up between them. Removing referential integrity may certainly speed up database operations but there's a pretty high cost to pay for that.
I have experienced such systems and the usual outcome is corrupted data, in the sense that records exists that shouldn't exist (or vice versa). These are the sort of systems where people believe they're okay because the application takes care of it, not caring that:
Every application has to take care of it, rather than one DB server.
It only takes one bug, or malignant app, to screw it up for everyone.
It is the responsibility of the database to protect itself! That is one of its best features.
As to what you should do, I simply put forward the possible things that can go wrong and how using FKs will prevent that (often with a cost/benefit analysis "skewed" toward my viewpoint, if necessary). Then let the company decide - it is their database, after all.
There is a school of thought that a well-written application does not need referential integrity. If the application does things right, the thinking goes, there's no need for constraints.
Such thinking is akin to not doing defensive programming because if you write the code correctly, you won't have bugs. While true, it simply won't happen. Not using appropriate constraints is asking for data corruption.
As for what you should do, you should encourage the company to add constraints at every opportunity. You don't want to push it to the point of getting in trouble or making a bad name for yourself, but as long as the environment is appropriate, keep pushing for it. Everyone's life will be better in the long run.
Personally, I have no problem with a database not having explicit declarations for foreign keys. But, it depends on how the database is being used.
Most of the databases that I work with are relatively static data derived from one or more transactional systems. I am not particularly concerned with rogue updates affecting the database, so an explicit definition of a foreign key relationship is not particularly important.
One thing that I do have is very consistent naming. Basically, every table has a first column called ID, which is exactly how the column is refered to in other tables (or, sometimes with a prefix, when there are multiple relationships between two entities). I also try to insist that every column in such a database has a unique name that describes the attribute (so "CustomerStartDate" is different from "ProductStartDate").
If I were dealing with data that had more "cooks in the pot", then I would want to be more explicit about the foreign key relationships. And, I then I am more willing to have the overhead of foreign key definitions.
This overhead arises in many places. When creating a new table, I may want to use use "create table as" or "select into" and not worry about the particulars of constraints. When running update or insert queries, I may not want the database overhead of checking things that I know are ok. However, I must emphasize that consistent naming greatly increases my confidence that things are ok.
Clearly, my perspective is not one of a DBA but of a practitioner. However, invalid relationships between tables are something I -- or the rest of my team -- almost never has to deal with.
As long as there's a single point of entry into the database it ultimately doesn't matter which "layer" is maintaining referential integrity. Using the "built-in layer" of foreign key constraints seems to make the most sense, but if you have a rock solid service layer responsible for the same thing then it has freedom to break the rules if necessary.
Personally I use foreign key constraints and engineer my apps so they don't have to break the rules. Relational data with guaranteed referential integrity is just easier to work with.
The performance gained is probably equivalent to the performance lost from having to maintain integrity outside of the db.
In an OLTP database, the only reason I can think of is if you care about performance more than data integrity. Enforcing a FK when row is inserted to the child table requires an index seek on the parent table and I can imagine there may be extreme situations where even this relatively quick index seek is too much. For example, some kind of very intensive logging where you can live with incorrect log entries and the application doing the writing is simple and unlikely to have bugs.
That being said, if you can live with corrupt data, you can probably live without a database in the first place.
Defensive Programming withot foreign keys works if you primarily use stored procedures and every application uses those stored procedures, instead of writing their own queries. Then you can control it quite easily and more flexible than the standard foreign keys.
One situation I can think of off the top of my head where foreign key constraints are not readily usable is a permissions module where permissions can be applied per user or per group, determined by a Boolean. So some of the records in the permissions table have a user id and others have a group id. If you still wanted foreign key constraints, you would have to have two different fields for the same mutally exclusive information and allow them to be null. Meaning adding another constraint saying that one is allowed to be null but they can't both be null, as well as a combination of 3 fields must be unique instead of a combination of 2 fields (user/group id and permission id). And the alternative is two separate tables containing the same data, meaning maintaining both tables separately.
But perhaps in that scenario, it's best to separate the data. Anything where you need the same field to connect to different tables based on other data in that record, you cannot use foreign field constraints, and it becomes best to keep the constraints in the stored procedures and views instead.

Join Table In Database Architecture?

I've been working on a database application (Access 2007) and have a couple questions regarding architecture. This is, by far, the most complex application I've written yet.
I presently have 5 tables, each with its own unique ID field:
platforms
vehicles
manuals
procedures
faults
It is possible for the same fault to appear in multiple procedures, and for the same procedure to appear in multiple manuals. I would like to provide users the opportunity to copy and delete records, as well as cross-link records between tables.
Presently, I have join tables between each of the tables listed above,
platforms_vehicles
vehicles_manuals
manuals_procedures
procedures_faults
Editing the relationships between the main tables (by editing contents of the join tables) has gotten quite complicated, as copy and delete actions have a cascading effect on other tables. In my mind, this could be performed efficiently using recursion, but actually getting it to work is another story altogether.
Question #1: Is the architecture I described a "good" way to arrange this data, or is it unnecessarily complicated? (I have a habit of doing things that way.)
Question #2: Is there a "preferred" method of doing this?
Question #3: Would I be better off organizing the tables in a different manner, such as this:
Only 5 tables,
platforms
vehicles
manuals
procedures
faults
Each table has a key for its content fields, as well as another key representing its parent record in the next higher table. For example,
platforms
platformID, platformName
vehicles
platformID, vehicleID, vehicleName
manuals
vehicleID, manualID, manualName
...
This seems more straightforward to me, and certainly less complex. If you all would care to provide some professional feedback, I would greatly appreciate it.
Thanks!
You need to use MS Access' Relationship tool to set up Referential integrity rules. That way, you can cascade deletes and updates automatically. I would avoid "join tables" as they are unnecessary as long as the parent key is in the table (which would be called a foreign key).

T-SQL database design and tables

I'd like to hear some opinions or discussion on a matter of database design. Me and my colleagues are developing a complex application in finance industry that is being installed in several countries.
Our contractors wanted us to keep a single application for all the countries so we naturally face the difficulties with different workflows in every one of them and try to make the application adjustable to satisfy various needs.
The issue I've encountered today was a request from the head of the IT department from the contractors side that we keep the database model in terms of tables and columns they consist of.
For examlpe, we got a table with different risks and we needed to add a flag column IsSomething (BIT NOT NULL ...). It fully qualifies to exists within the risk table according to the third normal form, no transitive dependency to the key, a non key value ...
BUT, the guy said that he wants to keep the tables as they are so we had to make a new table "riskinfo" and link the data 1:1 to the new column.
What is your opinion ?
We add columns to our tables that are referenced by a variety of apps all the time.
So long as the applications specifically reference the columns they want to use and you make sure the new fields are either nullable or have a sensible default defined so it doesn't interfere with inserts I don't see any real problem.
That said, if an app does a select * then proceeds to reference the columns by index rather than name you could produce issues in existing code. Personally I have confidence that nothing referencing our database does this because of our coding conventions (That and I suspect the code review process would lynch someone who tried it :P), but if you're not certain then there is at least some small risk to such a change.
In your actual scenario I'd go back to the contractor and give your reasons you don't think the change will cause any problems and ask the rationale behind their choice. Maybe they have some application-specific wisdom behind their suggestion, maybe just paranoia from dealing with other companies that change the database structure in ways that aren't backwards-compatible, or maybe it's just a policy at their company that got rubber-stamped long ago and nobody's challenged. Till you ask you never know.
This question is indeed subjective like what Binary Worrier commented. I do not have an answer nor any suggestion. Just sharing my 2 cents.
Do you know the rationale for those decisions? Sometimes good designs are compromised for the sake of not breaking currently working applications or simply for the fact that too much has been done based on the previous one. It could also be many other non-technical reasons.
Very often, the programming community is unreasonably concerned about the ripple effect that results from redefining tables. Usually, this is a result of failure to understand data independence, and failure to guard the data independence of their operations on the data. Occasionally, the original database designer is at fault.
Most object oriented programmers understand encapsulation better than I do. But these same experts typically don't understand squat about data independence. And anyone who has learned how to operate on an SQL database, but never learned the concept of data independence is dangerously ignorant. The superficial aspects of data independence can be learned in about five minutes. But to really learn it takes time and effort.
Other responders have mentioned queries that use "select *". A select with a wildcard is more data dependent than the same select that lists the names of all the columns in the table. This is just one example among dozens.
The thing is, both data independence and encapsulation pursue the same goal: containing the unintended consequences of a change in the model.
Here's how to keep your IT chief happy. Define a new table with a new name that contains all the columns from the old table, and also all the additional columns that are now necessary. Create a view, with the same name as the old table, that contains precisely the same columns, and in the same order, that the old table had. Typically, this view will show all the rows in the old table, and the old PK will still guarantee uniqueness.
Once in a while, this will fail to meet all of the IT chief's needs. And if the IT chief is really saying "I don't understand databases; so don't change anything" then you are up the creek until the IT chief changes or gets changed.

What are common pitfalls when developing a new SQL database?

I know, I quite dislike the catch-all survey type questions, but I couldn't think of a better way to find out what I think I need to know. I'm very green in the world of database development, having only worked on a small number of projects that merely interacted with the database rather than having to actually create a new one from scratch. However, things change and now I am faced with creating my own database.
So far, I have created the tables I need and added the columns that I think I need, including any link tables for many-many relationships and columns for one-to-many relationships. I have some specific questions on this, but I felt that rather than get just these answered, it would make more sense to ask about things I may not even know, which I should address now rather than 6 months from now when we have a populated database and client tools using it.
First the questions on my database which have led me to realise I don't know enough:
How do I ensure my many-to-many link tables and my one-to-many columns are up-to-date when changes are made to the referenced tables? What problems may I encounter?
I am using nvarchar(n) and nvarchar(MAX) for various text fields. Should I use varchar equivalents instead (I had read there may be performance risks in using nvarchar)? Are there any other gotchas regarding the selection of datatypes besides being wary of using fixed length char arrays to hold variable length information? Any rules on how to select the appropriate datatype?
I use int for the ID column of each table, which is my primary key in all but the link tables (where I have two primary keys, the IDs of the referenced table rows). This ID is set as the identity. Are there pitfalls to this approach?
I have created metadata tables for things like unit types and statuses, but I don't know if this was the correct thing to do or not. Should you create new tables for things like enumerated lists or is there a better way?
I understand that databases are complex and the subject of many many worthy tomes, but I suspect many of you have some tips and tricks to augment such reading material (though tips for essential reading would also be welcome).
Community wiki'd due to the rather subjective nature of these kinds of posts. Apologies if this is a duplicate, I've conducted a number of searches for something like this but couldn't find any, though this one is certainly related. Thanks.
Update
I just found this question, which is very similar in a roundabout way.
Not normalising
Not using normalisation
Trying to implement a denormalised schema from the start
Seriously:
Foreign keys will disallow deletes or updates from the parent tables. Or they can be cascaded.
Small as possible: 2 recent SO questions datatypes and (n)varchar
May not be portable and your "natural key" (say "product name") still needs a unique constraint. Otherwise no, but remember that an IDENTITY column is a "surrogate key"
Edit: Say you expect to store fruit with columns FruitID and FruitName. You have no way to restrict to one occurence of "Apple" or "Orange" because although this is your "natural key", you are using a surrogate key (FruitID). So, to maintain integrity, you need a unique constraint on FruitName
Not sure or your meaning, sorry. Edit: Don't do it. Ye olde "One true lookup table" idea.
I'll reply to your subjective query with some vague generalities. :)
The most common pitfall of designing a database is the same pitfall of any programming solution, not fully understanding the problem being solved. In the case of a database, it is understanding the nature of the data. How big it is, how it comes and goes, what business rules must it adhere to.
Here are some questions to ponder.
What is updated the most frequently? Is keeping that table write-locked going to lock up queries? Will it become a hot spot? Even a seemingly well normalized schema can be a poor performer if you don't understand your read versus write ratios.
What are your external interface needs? I've been on projects where the dotted line to "that other system" nearly scuttled the whole project because implementing it was delayed until everything else was in place, that is to say, everything else was inflexible.
Any other unspoken requirements? My favorite is date sensitivity. All the data is there, your reports are beautiful, the boss looks them over and asks, when did that datum change? Who did it and when? Is the database supposed to track itself and its users, or just the data? Will your front end do it for you?
Just some things to think about.
It does sounds like you've got a good grasp on what you're meant to be doing, and indeed there isn't "one true path" to doing databases.
Have you set up cascades for your hierarchical objects (i.e., a single delete at the 'head' of your object in the database will delete all entries in tables relating to that entry)?
Your link tables and 1:n columns should be foreign keys, so there isn't much to worry about if the data changes. By "two primary keys" here, did you mean indexes?
As for metadata tables, I've done them in the past, and I've not done them. A single char status with SQL comment can suffice for a limited set of statuses, but beyond a certain amount, or where you can think of adding more in the future, you might want to have a reference to another table of metadata, or maybe a char(8ish). E.g., I've seen user tables have "NORMAL", "ADMIN", "SUPER", "GUEST", etc for user type, which could have been 1,2,3,4,5 fkeys to a "UserType" table, but with such a restricted enumeration does it matter? Other people have a table of permissions (booleans of what a user can do) instead - many ways to skin a cat.
You might find some usable stuff in these slides:
[http://www.slideshare.net/billkarwin/sql-antipatterns-strike-back][1]
I also am a beginner to database design, but I found this online tutorial very, very helpful:
Database design with UML and SQL, 3rd edition
The author explains all the fundamental design aspects of database, and in a very clear manner. Before I found this online guide I did a lot of wikipedia reading about normalization. While that helped, this author explains the exact same stuff (through 3rd normal form, at least) but in a much, much easier to read way. It pretty much addresses all your questions as well.
I'd suggest a good book. The best IMO is this:
http://www.amazon.com/Server-2005-Database-Design-Optimization/dp/1590595297/ref=ntt_at_ep_dpt_1
In addition to not normalizing, a common problem I see is overindexing, done before there are performance measurements that take into account your in-production mix of reads vs. writes.
It's really, really easy to add an index to speed up a query, and harder to figure out which one to remove when you have several that are getting updated during an INSERT or UPDATE.
The middle ground is to go after obvious secondary indexes (e.g., for common, frequent lookups by name on large tables), deferring other candidate indexes until you have reasonable performance tests in place.
Among other things, not using primary keys, not thinking ahead about whether you'll be using indexed views (and designing tables accordingly; I once had to drop and recreate a large table at my site to change its ANSI_NULL attribute to ON so that I could then use it with an indexed view), using indices.

Many-to-many relationship: use associative table or delimited values in a column?

Update 2009.04.24
The main point of my question is not developer confusion and what to do about it.
The point is to understand when delimited values are the right solution.
I've seen delimited data used in commercial product databases (Ektron lol).
SQL Server even has an XML datatype, so that could be used for the same purpose as delimited fields.
/end Update
The application I'm designing has some many-to-many relationships. In the past, I've often used associative tables to represent these in the database. This has caused some confusion to the developers.
Here's an example DB structure:
Document
---------------
ID (PK)
Title
CategoryIDs (varchar(4000))
Category
------------
ID (PK)
Title
There is a many-to-many relationship between Document and Category.
In this implementation, Document.CategoryIDs is a big pipe-delimited list of CategoryIDs.
To me, this is bad because it requires use of substring matching in queries -- which cannot make use of indexes. I think this will be slow and will not scale.
With that model, to get all Documents for a Category, you would need something like the following:
select * from documents where categoryids like '%|' + #targetCategoryId + '|%'
My solution is to create an associative table as follows:
Document_Category
-------------------------------
DocumentID (PK)
CategoryID (PK)
This is confusing to the developers. Is there some elegant alternate solution that I'm missing?
I'm assuming there will be thousands of rows in Document. Category may be like 40 rows or so. The primary concern is query performance. Am I over-engineering this?
Is there a case where it's preferred to store lists of IDs in database columns rather than pushing the data out to an associative table?
Consider also that we may need to create many-to-many relationships among documents. This would suggest an associative table Document_Document. Is that the preferred design or is it better to store the associated Document IDs in a single column?
Thanks.
This is confusing to the developers.
Get better developers. That is the right approach.
Your suggestion IS the elegant, powerful, best practice solution.
Since I don't think the other answers said the following strongly enough, I'm going to do it.
If your developers 1) can't understand how to model a many-to-many relationship in a relational database, and 2) strongly insist on storing your CategoryIDs as delimited character data,
Then they ought to immediately lose all database design privileges. At the very least, they need an actual experienced professional to join their team who has the authority to stop them from doing something this unwise and can give them the database design training they are completely lacking.
Last, you should not refer to them as "database developers" again until they are properly up to speed, as this is a slight to those of us who actually are competent developers & designers.
I hope this answer is very helpful to you.
Update
The main point of my question is not developer confusion and what to do about it.
The point is to understand when delimited values are the right solution.
Delimited values are the wrong solution except in extremely rare cases. When individual values will ever be queried/inserted/deleted/updated this proves it was the wrong decision, because you have to parse and touch all the other values just to work with the desired one. By doing this you're violating first (!!!) normal form (this phrase should sound to you like an unbelievably vile expletive). Using XML to do the same thing is wrong, too. Storing delimited values or multi-value XML in a column could make sense when it is treated as an indivisible and opaque "property bag" that is NOT queried on by the database but is always sent whole to another consumer (perhaps a web server or an EDI recipient).
This takes me back to my initial comment. Developers who think violating first normal form is a good idea are very inexperienced developers in my book.
I will grant there are some pretty sophisticated non-relational data storage implementations out there using text property bags (such as Facebook(?) and other multi-million user sites running on thousands of servers). Well, when your database, user base, and transactions per second are big enough to need that, you'll have the money to develop it. In the meantime, stick with best practice.
It's almost always a big mistake to use comma separated IDs.
RDBMS are designed to store relationships.
My solution is to create an
associative table as follows: This is
confusing to the developers
Really? this is database 101, if this is confusing to them then maybe they need to step away from their wizard generated code and learn some basic DB normalization.
What you propose is the right solution!!
The Document_Category table in your design is certainly the correct way to approach the problem. If it's possible, I would suggest that you educate the developers instead of coming up with a suboptimal solution (and taking a performance hit, and not having referential integrity).
Your other options may depend on the database you're using. For example, in SQL Server you can have an XML column that would allow you to store your array in a pre-defined schema and then do joins based on the contents of that field. Other database systems may have something similar.
The many-to-many mapping you are doing is fine and normalized. It also allows for other data to be added later if needed. For example, say you wanted to add a time that the category was added to the document.
I would suggest having a surrogate primary key on the document_category table as well. And a Unique(documentid, categoryid) constraint if that makes sense to do so.
Why are the developers confused?
The 'this is confusing to the developers' design means you have under-educated developers. It is the better relational database design - you should use it if at all possible.
If you really want to use the list structure, then use a DBMS that understands them. Examples of such databases would be the U2 (Unidata, Universe) DBMS, which are (or were, once upon a long time ago) based on the Pick DBMS. There are likely to be other similar DBMS providers.
This is the classic object-relational mapping problem. The developers are probably not stupid, just inexperienced or unaccustomed to doing things the right way. Shouting "3NF!" over and over again won't convince them of the right way.
I suggest you ask your developers to explain to you how they would get a count of documents by category using the pipe-delimited approach. It would be a nightmare, whereas the link table makes it quite simple.
The number one reason that my developers try this "comma-delimited values in a database column" approach is that they have a perception that adding a new table to address the need for multiple values will take too long to add to the data model and the database.
Most of them know that their work around is bad for all kinds of reasons, but they choose this suboptimal method because they just can. They can do this and maybe never get caught, or they will get caught much later in the project when it is too expensive and risky to fix it. Why do they do this? Because their performance is measured solely on speed and not on quality or compliance.
It could also be, as on one of my projects, that the developers had a table to put the multi values in but were under the impression that duplicating that data in the parent table would speed up performance. They were wrong and they were called out on it.
So while you do need an answer to how to handle these costly, risky, and business-confidence damaging tricks, you should also try to find the reason why the developers believe that taking this course of action is better in the short and the long run for the project and company. Then fix both the perception and the data structures.
Yes, it could just be laziness, malicious intent, or cluelessness, but I'm betting most of the time developers do this stuff because they are constantly being told "just get it done". We on the data model and database design sides need to ensure that we aren't sending the wrong message about how responsive we can be to requests to fulfill a business requirement for a new entity/table/piece of information.
We should also see that data people need to be constantly monitoring the "as-built" part of our data architectures.
Personally, I never authorize the use of comma delimited values in a relational database because it is actually faster to build a new table than it is to build a parsing routine to create, update, and manage multiple values in a column and deal with all the anomalies introduced because sometimes that data has embedded commas, too.
Bottom line, don't do comma delimited values, but find out why the developers want to do it and fix that problem.