Corruption caused by writes to SD Card using FatFs with TI Starterware - embedded

I have test code that starts with a large existing file on SD Card, test.dat, and the test does this:
f_open(&fp, "test.dat", FA_OPEN_ALWAYS|FA_READ|FA_WRITE);
f_write(&fp, bufferOfZeros, 4096, &ioBytes);
Seems straight forward.
The result of the f_write is SD Card corruption.
I've traced the EDMA on my embedded device to watch FatFs read/write requests. The f_open read requests are all healthy, they properly find the file and FAT table.
The f_write starts by reading the first sector into scratch buffer, great. Then it memcpy's the zeros into the scratch buffer, great. After memcpy of 512 zeros, it needs to commit the sector and move to the next one.
It's at this point where the code is confused. It writes that scratch buffer of zeros to the FAT table!!
The offending code in ff.c/f_write() is:
if (fp->flag & FA__DIRTY) { /* Write-back sector cache */
if (disk_write(fp->fs->drv, fp->buf, fp->dsect, 1) != RES_OK)
ABORT(fp->fs, FR_DISK_ERR);
fp->flag &= ~FA__DIRTY;
Here, fp->buf is the sector buffer of zeros, but fp->dsect is the FAT sector (8318), not the file data sector (10240)! Oops. At disk_write() fp->buf matches fp->sect.
Seems like a basic use case here, I am shocked to see this.
I'm hoping someone in the world has anyone dug into a problem like this before with FatFs?

Clifford is correct - it's a problem on my end, and I knew such a simple use case has to work.
I switched the test to
f_open(&fp, "test.dat", FA_OPEN_ALWAYS|FA_READ|FA_WRITE);
f_write(&fp, pattern, 512, &ioBytes);
f_lseek(&fp, 0);
f_read(&fp, zeroedBuffer, 512, &ioBytes);
This revealed a caching problem. The f_read operation succeeded, and the DMA completed fine, but zeroedBuffer remained unmodified because L0 was not flushed. Therefore, FatFs was seeing a mix of correct values and stale values. I fixed EDMA caching and now it all works.
Another learning, TI Starterware comes with R0.4b. I started with that, and it returned FR_RW_ERROR that was perplexing. I moved up to R0.11a and got much better error feedback.
Anyone know of unit tests for FatFs?

Related

STM32F407VET FatFs f_close returns FR_DISK_ERR

I am interfacing SD card(16Gb Sandisk ultra micro SD) to STM32F407 micro-controller with SDIO protocol using chan FatFS library. When I try to write data into existing file, f_write returns FR_OK and returns numbers of written bytes(this value is equal to number of bytes to write), but f_close() returns FR_DISK_ERR, and in the end the file is empty.
With more experiment i found that if i format the micro SD card using 64Kb unit allocation size and the existing file with some text in it then i am able to write 64Kb data to file but f_close() returns FR_DISK_ERR, and in the end the file is not empty. I am able to see the data in Windows 10 OS.
If the existing file has no text in this then i am getting an empty file even though f_write is returning FR_OK but f_close is returning FR_DISK_ERR.
In short when I try to use f_write on a text file i created from my PC I can overwrite the content of that file till 64Kb. But i can't get it to work with an empty file i created with f_open
I came across a similar post with the same issue
TMS320F2812 FatFs f_write returns FR_DISK_ERR
I tried the solutions given in the above post but it didn't work. Since i have 192K RAM in my controller, i guess its sufficient enough for this FatFs module to work. My stack size is around 13Kb and Heap size 4Kb which is too much for this application. SD card is given 3.3V supply voltage.
I went little deep in code to see where the error is occurring and found that i am getting SD_ILLEGAL_CMD error while setting block size for card. Inside f_close(ff.c file)->f_sync(ff.c file)->move_window(ff.c file)->disk_read(diskio.c file)->SD_ReadBlock(sdcard.c file) is returning SD_ILLEGAL_CMD error while setting block size for card.
Any solutions are appreciated. If more information is required please feel free to ask, i will update with more information.
Chan FatFs Version - R0.07e

how ext4 works with fallocate

Recently, I am testing the proper usage of ext4 filesystem. what is my expert is that:
when system crashed, the data had been write return ok can not loss, but metadate can.
Here is my usage:
1. call fallocate to alloc centain space
fallocate(fd, 0, 0, 4*1024*1024); //4MB
2. call fsync(fd) let data and metadata write to disks
3. then i call function to randomly write the file with 4k size(random data but not 0). with O_DRICT flag,but not call fsync. I log the offset with return write ok.
4. check the offset that logged. but i find in some offset, read 4k data, is 0. It seems mean that offset isn't used like hole files.
My question is that:
<1. why after calling fallocate and fsync the metadata of the file still seems
indicate some blocks is not used, so when read it return null. It is my understand .
<2. have other api to call, can make sure that in allocate space with file is not holes ,after that when write data return ok with O_DIRECT can make sure the data will not be loss even the system crashed.
Thanks.
Only writing to the file space can eliminate the hole. Without writing, there is no dirty page and fsync simply does nothing.
I am wondering how did you execute you step 4. It seems that you did it by a manual crash, did you? If you read it after write without a crash, it should not be zero, provided you wrote non-zeros. If you read it after a crash, zero can happen if disk cache existed. However, this kind of zero is not like holes, they are zeros read from the disk (very probably the disk contains zeros).

Software memory testing for bus failures

I have a board with quite a few flash chips, some of them are showing intermittent failures. Standard memory tests are not showing any specific problem addresses, other than certain chips are failing intermittently under mechanical and thermal stress.
Suspecting the actual connections and not the flash cells themselves, I'm looking for a way to test the parallel bus for address or data pin errors.
There are some memory tests but they apply better to RAM rather than flash memory (http://www.ganssle.com/testingram.htm). Specifically, the parallel flash has a sequence of bus writes to write to each value; a write/verify failure could easily be the write operation which could be any pin on the bus.
Ideas welcome...
The typical memory tests are there to do that. I prefer a pseudo randomizer (deterministic using an lfsr) to the 0xAA, 0x55, 0xFF, 0x00 tests. This allows for an address bus test as well as data bus test in two passes (repeat inverted). I say typical in the sense of wiggle the data bits and address bits both states each and vary the states of signals and their neighbors. The pounding on a ram to create thermal or other stresses, well you cant write very fast to a flash so you cant really do fast write/read cycles.
Flash creates another problem and that is writing then reading back isnt that interesting, you want to write the read back later, hours, days, weeks to determine if the part is actually holding data.
When you say thermal or stress do you mean only during the time it is above X degrees it fails, or do you mean that due to thermal stress it is broken all the time after the event. Likewise with mechanical, while vibrating or under mechanical stress the part fails, but when relieved of that stress it is okay, or the mechanical stress has done permanent damage that can be detected under stress or not.
Now although you cant do fast write/read cycles, you can punish a flash by reading heavily. I have seen read-disturb problems by constant reading of one block or location. Not necessarily something you have time to do for every location, but you might fill the ram with a pseudo random pattern and concentrate on one location for a while, (minutes, tens of minutes), if you have a part that you know is bad see if this accelerates the detection of the problem and if any location will work or only certain ones. then another thing is to read all the locations repetitively for hours/days or leave it sit for hours/days/weeks and then do a read pass without an erase or write and see if it has lost anything.
unfortunately as you probably know each new failure case takes its own research project and development of a new test.
First step to test a memory is data bus test0 0 0 0 0 0 0 • In this test, data bus wiring is properly tested to0 0 0 0 0 0 0 confirm that the value placed on data bus by processor0 0 0 0 0 0 0 is correctly received by memory device at the other end0 0 0 0 0 0 00 0 0 0 0 0 0 • An obvious way to test is to write all possible0 0 0 0 0 0 0 data values and verify 0 0 0 0 0 0 0 • Each bit can be tested independently• To perform walking 1s test, write the first data value given in the table, verify by reading it back, write the second value, verify and so on. • When you reach the end of the table, the test is complete
In the linked article Jack Ganssle says: "Critical to this [test], and every other RAM test algorithm, is that you write the pattern to all of RAM before doing the read test."
Since reading should be isolated from writing, testing the flash is easier. Perform the writing portion of the tests while the system is not under stress. Then perform the reading portion with the system under stress. By recording the address, expected value, and actual value in enough error cases, you should be able to determine the source of the errors.
If the system never fails when doing the above, you can then perform the whole tests while under stress. Any errors that appear are most likely write errors.
I've decided to design a memory pattern that I think I can deduce both data and address errors from. The concept is to use values significantly different as key indicators of possible read errors. The concept is also to detect a failure on one pin at a time.
The test will read alternately from only bottom and top addresses (0x000000 and 0x3FFFFF - my chip has 22 address lines). In those locations I will put 0xFF and 0x00 respectively (byte wide). The idea is to flip all address and data lines and see what happens. (All other values in the flash have at least 3 bits different from 0x00 and 0xFF)
There are 44 addresses that a single pin failure could send me to in error. In each address put one of 22 values to represent which of the 22 address pin was flipped. Each are 2 bits different from each other, and 3 bits different from 00 and FF. (I tried for 3 bits different from each other but 8 bits could only get 14 values)
07,0B,0D,0E,16,1A,1C,1F,25,29,2C,
2F,34,38,3D,3E,43,49,4A,4F,52,58
The remaining addresses I put a nice pattern of six values 33,55,66,99,AA,CC. (3 bits different from all other values) value(address) = nicePattern[ sum of bits set in address % 6];
I tested this and have statistically collected 100s of intermittent failure incidents synchronized to the mechanical stress.
single bit errors detectable
double bit errors deducible (Explainable by a combination of frequent single bit errors)
3 or more bit errors (generally inconclusive)
Even though some of the chips had 3 failing pins, 70% of the incidents were single bit (they usually didn't fail at the same time)
The testing group is now using this to identify which specific connections are failing.

Bits Are Scrambled

The Problem: I send one value into a UART and nulls emerge on the other UART.
--- Details ---
These are both PIC processors (PIC24 and PIC32)
They are both hard wired onto a printed circuit board.
They are communicating, each via one of the UART modules which reside within them.
They are (ostensibly; according to docs) both configured for 115200 bps, 8-N-1
No handshaking, no CTS enabled, no RTS enabled; I'm just putting bytes on the wire and out they go.
(These are short little 4-byte commands and responses which fits pretty neatly)
The PIC32 is going 80 MHz.
The PIC24 has F[cy] = 14745600
i.e., it is going 14.7456 MHz
The PIC24 sends four bytes (a specific command sequence)
When I set a breakpoint at the Interrupt Service Routine for the UART, The PIC32 shows nulls, then I am seeing repeated hits on the (PIC32 code) breakpoint after the first four, and I continue to see nulls (which makes sense since the PIC24 is not sending anything)
i.e., the UART appears to be repeatedly generating interrupts when there is no reason
I did not write the code on the PIC32 side, and I am learning daily how it works.
Then I let the code just run, and I inevitably wind up on a line that says
52570 1D01_335C 9D01_335C _general_execption_handler sdbbp 0x0
When I get there,
The cause register holds 0080181C
The EPC register holds 9D00F228
The SP register holds 9F8FFFA0
This happened like clockwork, so I got suspicious of the __ISR that would not stop. MpLab showed me this...
432:
433: //*********************************************************//
434: void __ISR(_UART1_VECTOR, ipl5) IntUart1Handler(void) //MCU communication port
435: {
9D00F204 415DE800 rdpgpr sp,sp
9D00F208 401A7000 mfc0 k0,EPC
9D00F20C 401B6000 mfc0 k1,Status
9D00F210 27BDFF88 addiu sp,sp,-120
9D00F214 AFBA0074 sw k0,116(sp)
9D00F218 AFBB0070 sw k1,112(sp)
9D00F21C 7C1B7844 ins k1,zero,1,15
9D00F220 377B1400 ori k1,k1,0x1400
9D00F224 409B6000 mtc0 k1,Status
9D00F228 AFBF0064 sw ra,100(sp) ;<<<-------EPC register always points here
9D00F22C AFBE0060 sw s8,96(sp)
9D00F230 AFB9005C sw t9,92(sp)
9D00F234 AFB80058 sw t8,88(sp)
9D00F238 AFAF0054 sw t7,84(sp)
9D00F23C AFAE0050 sw t6,80(sp)
9D00F240 AFAD004C sw t5,76(sp)
9D00F244 AFAC0048 sw t4,72(sp)
9D00F248 AFAB0044 sw t3,68(sp)
9D00F24C AFAA0040 sw t2,64(sp)
9D00F250 AFA9003C sw t1,60(sp)
9D00F254 AFA80038 sw t0,56(sp)
9D00F258 AFA70034 sw a3,52(sp)
9D00F25C AFA60030 sw a2,48(sp)
9D00F260 AFA5002C sw a1,44(sp)
9D00F264 AFA40028 sw a0,40(sp)
9D00F268 AFA30024 sw v1,36(sp)
9D00F26C AFA20020 sw v0,32(sp)
9D00F270 AFA1001C sw at,28(sp)
9D00F274 00001012 mflo v0
9D00F278 AFA2006C sw v0,108(sp)
9D00F27C 00001810 mfhi v1
9D00F280 AFA30068 sw v1,104(sp)
9D00F284 03A0F021 addu s8,sp,zero
I look a little more closely at the numbers, and I see that at that time, if we add 100 (0x64) to FFA0 (the bottom 16 bits of the SP) we get 0x10004, which I am guessing is 4 too much.
PIC Manual DS61143E-page 50 says that that nomenclature means, SW Store Word Mem[Rs+offset> = Rt and other experts have told me that the cause register is telling me that the EXCCODE bits are 7 which is the code for a bus exception on load or store.
Or, I'm totally guessing here (would love to get some experts' knowledge on this) something is not clearing something and I'm encountering infinite recursion on an int handler.
All of this is starting to make sense.
THE QUESTION
Could someone please suggest the most common reasons for an int like this to be repeatedly hitting me ?
Does anyone see any common relationship between the bogus nuls coming from the UART which could somehow be connected with this endlessly generated int ? Am I even on the right track ?
In your answer, please tell me how to acknowledge the Int from the UART. I know how I do that in the PIC24 (I wrote that code totally, in ASM) but I don't know how this is done in in C on the PIC32. Assembly will be fine. I'll inline it. I'm working with code I didn't write here, and I thank you for your answers
What is the most common reason that the UART (#1, in this case) would be repeatedly generating interrupts ?
The most common reason an interrupt subroutine is called over and over is that the interrupt request is never acknowledged in the routine.
Are you sure you clear the corresponding IRQ bit?
To ease UART debugging you should first connect the UART to a PC and make sure your target can communicate both ways with the PC. With two targets at the same time, you can't determine on which one the problem is apart from inspecting signals with a scope.
On many devices an interrupt must be explicitly cleared to prevent the ISR from simply re-entering when complete.
In most cases a UART will have status bits that indicate the source of the interrupt, knowing that might tell you something, but not telling us makes it difficult to help you. You can inspect the UART registers directly in the debugger, however in some devices the act of reading a bit may in fact clear a bit, and that is true in the debugger too, so be aware of that possibility (check the data sheet/user manual).
Some UARTS require their transmitter to be explicitly switched off to stop transmitting nulls, while others are triggered automatically when data is placed in the tx register and stop after the necessary number of bits are shifted out. Again check the data sheet/manual for the part. If the PIC32 code is known to be working, then since this possible error would be with the PIC24 code, it seems to fit. You can check this simply by using an oscilloscope on the Tx line from the PIC24, if it is transmitting, you will see at least start/stop bit transitions (framing). If there is nothing, then the problem is probably at the PIC32 end.
While you have the scope out, you can check that the bit timing is correct and that you are actually transmitting at 115200. It is easy to get the clocking wrong, and that should be your first check. If the baud rate is incorrect, the PIC32 will likely generate framing error interrupts, which if not handled may persist indefinitely.
Another possibility is that after transmission the PIC24 leaves the line in the "break" state, and that the PIC32 UART is generating "line-break" interrupts. That is why it is important to look at the UART status registers to determine the interrupt cause.
As you can see, there are many possibilities; I think I have covered the most likely ones, but more methodical debugging effort and information gathering on your part is required. I hope I have guided you in this too.
There were the three root causes which were in place...
The interrupt priority level was set at value 6 in the initialization code for UART1
The first line of the interrupt service routine was coded with an interrupt priority level of 5
The first three bytes of UART data were disappearing from the data stream (this is still unsolved)
Here's the not-so-obvious way they were causing the problem
First three bytes never appeared
Fourth byte did appear
Interrupt hit (as level 6) and invoked __ISR routine
__ISR was acting as ipl5 agent
First instruction executed (possibly more, I couldn't debug that accurately)
As soon as the first instruction finished, the "higher" priority 6 interrupt immediately kicked in
This resulted in the same interrupt again
The process repeated itself infinitely.
In short order, Stack Overflow resulted
The Fix
Make sure these two lines of code agree with each other...
The IPL line in the init code, wrong way then the right way
//IPC6bits.U1IP=6; //// Wrong !!! Uart 1 IPL should not be 6 !!!
IPC6bits.U1IP=5; //// Uart 1 IPL = 5 Correct way; matches __ISR
Interrupt Service Routine
void __ISR(_UART1_VECTOR, ipl5) IntUart1Handler(void) //// Operating as IPL 5
:
:
:
:
Poor design decision. If both are on same board SPI would have been more feasible and a lot faster.

Writing .hex file to Internal FlashROM of 8051 microcontroller using SPI bus

I am doing a firmware upgrade using SPI bus on EEPROM as well as Internal ROM of 8051, basically writing a .hex file on both these memory devices.I am able to see .hex file written there.I am able to see slave and master are communicating properly, but not able to write anything on my memory devices.
If you have suggestions and if you have faced similar problems, please let me know where is the actual problem.
Any inputs would be welcomed.
Regards,
Ravi
I think more information will likely be required. In any case, here a few pitfalls I could see:
Hex Files are not necessarily memory images. The 8051s I've worked with usually use Intel Hex which is an ASCII format that describes the memory. The format is well documented here.
If you're having trouble writing to the EEPROM, you may not be writing the proper instructions. Typically, SPI EEPROM will be Byte addressed, but still has paging internally. You should start your writes on a Page boundary and write the whole page, then issue another write command, etc. By convention if you overrun a page, or start in the middle of a page it will loop around. So if your page is 8 bytes long, and you start writing 0-7 starting at index 4, you'll get:
Page Start: Index 0 = 4
Index 1 = 5
Index 2 = 6
Index 3 = 7
Index 4 = 0
Index 5 = 1
Index 6 = 2
Index 7 = 3
Most EEPROMs have locking mechanisms to prevent accidental writes once they are finalized. If the lock has been set, you will need to write an unlocking method (this will be detailed in the data sheet if it has it)
To further help you, please reference part numbers and better yet Data Sheets if you can.