Why does #RepositoryRestController do not have #ResponseBody annotation like #RestController? - spring-data-rest

I'm using Spring-data-rest and wondering if there is a reason behind the fact that #RestController also has #ResponseBody but #RepositoryRestController has not.

All controllers in Spring Data REST using that annotation return a ResponseEntity<T> anyway, so that technically #ResponseBody is not needed.
We generally prefer ResponseEntity as return type for two reasons:
In controller methods serving REST requests, you usually want to control details of the response (headers, the status code etc.) for which ResponseEntity is exactly the type for.
Spring MVC detects ResponseEntity and thus we don't the additional annotation.
I'm not sure we can actually change that, as despite the name of the annotation, there could be implementations out there that still use view resolution. If you still think, it's a good idea, feel free to raise a ticket in our JIRA.

Related

Resource or Restlet

I am using Restlet 2.2.1 and building Rest services. As you know, Router is used to attach either Restlet or Resource as target.
Router router = new Router( getContext() );
router.attach("/healthcheck1",HealthCheckResource.class );
router.attach("/healthcheck2", new HealthCheckRestlet() );
Then you can implement your logic in handle()
Wondering which is best one to use? I know Resource has a very definite life cycle (doInit, handle, release ...) and good place to implement one time logic like initialization.
Attach a ServerResource subclass rather than a Restlet instance when feasible, for a couple of reasons:
Resources are the natural way to structure RESTful APIs. When you use the #Get, #Put, etc. annotations on a resource class, you're effectively documenting that part of your RESTful API, and there are tools that can extract that information to create online documentation automatically. If you use a Restlet instance, its behavior in response to GET, PUT, etc. is not immediately apparent. Ironically, using a Restlet makes it easier to write APIs that are not RESTful.
A separate instance of the resource class is created for each request, meaning that an instance is normally confined to a single thread, which simplifies reasoning about thread-safety. In constrast, the same Restlet instance will be used for all handle(...) calls, potentially leading to complicated thread-safety requirements.
Because each request gets its own resource instance, the resource methods might need to appeal to internal services that are passed via the application context or injected into the resource (see this Restlet extension).
Incidentally, your comment about "one time logic like initialization" might be a misunderstanding. The doInit method is called for each instantiated resource (i.e., once per request for that resource), not one time only.
Note that I'm recommending against directly subclassing Restlet as an end target for a resource URL, except maybe for trivial resources. Using subclasses of Restlet is a different matter: Attaching a Filter which wraps a resource is fine.

What dependency injection pattern to use for a MessageProvider?

I have a ContactController where I set up a message in the TempData (this is to display a message in the screen after successful submission) and in the layout, there's a partial _Message.cshtml that is supposed to render the message, if any. Method signatures below:
List<Message> GetMessages(IDictionary<string, object> dictionary);
void SetMessage(IDictionary<string, object> dictionary, string body, MessageType type);
Initially I thought about having a MessageProvider dependency injected in the constructor. But then it occurred to me: What if I need do this in other controllers? Besides, for me to use it in the partial view, I need to resolve the implementation from the container which I think is an acceptable solution to use in a class that extends WebViewPage (considering I am not going to unit test it).
public MyCustomViewPage()
{
this.MessageProvider = DependencyResolver.Current.GetService<MessageProvider>();
}
public MessageProvider MessageProvider { get; set; }
But can we avoid the Service Locator anti-pattern using another dependency injection pattern?
I was thinking this MessageProvider has a good default implementation and since we might need to use this in more controllers in the future, this might be a good candidate for Ambient Context design pattern as per the book Dependency Injection in .NET by Mark Seemann.
This way, I would eliminate the potential problem of having to change other controller constructors in the future in case I happen to have to set messages in them, I would eliminate the need to use the Service Locator anti-pattern in the MyCustomViewPage constructor and my controller will still be testable.
I would then use the following code in partial view:
var messages = MessageProvider.Current.GetMessages()
And the following code in my controllers:
MessageProvider.Current.SetMessage("Message sent successfully.", MessageType.Success);
And in my test fixtures (if I would actually need another implementation):
MessageProvider.SetMessageProvider(otherImplementation);
Do you think this approach makes sense? Any downsides I might be missing?
To anyone who might be looking for the same answer in the future, I decided to use Ambient Context for this because of the reasons I mentioned in the quesiton.

Accessing the ServiceModel layer directly

I'm new to WCF, so apologies if I'm missing the boat completely.
It seems like WCF provides plenty of functionality for using the "Channel" layer by itself. For example, to create a server, you can create a channel listener from a binding and call WaitForRequest, Reply, etc. These methods all deal with Message objects, so it is up to you to do something with the message.
My question has to do with what happens once we've already got a message. Suppose I have an object that implements a service, described by a ServiceContract, and a Message object which I know represents a call to a particular operation. What I'd really like to do is something like:
Message requestMessage = GetMessageSomehow();
OperationDescription oc = GetContractForMessage();
Message replyMessage = Invoke(myService, oc, requestMessage);
At the very least, if I could somehow access the IOperationInvoker and IDispatchMessageFormatter objects that get created for a type, it would be pretty simple to chain them together to get the functionality I'm looking for.
In my particular case, I need to implement some simple Soap 1.1 and 1.2 services (with no WS-Addressing). I already have HttpListenerRequest/Response objects, and can route based off of either the SOAPAction or ContentType header.
I think having this functionality would also be pretty useful for unit testing. For example, I need to implement to existing clients. It would be nice to have unit tests where I could test that the Attributes on the service class are correct (i.e. that the message that I know I will be getting gets properly translated into a call on my service interface).
Any suggestions?
Serialization/Deserialization from that Message instance to actual parameters for a call is usually done by an IDispatchMessageFormatter / IClientMessageFormatter.
On the server side, an IDispatchMessageFormatter is injected into the DispatchRuntime by a custom operation behavior that the data contract serializer (or other serializer) inserts.
But... if you're not using ServiceHost, there's no DispatchRuntime. Basically, if you want all of this, you're going to have to do all the hard work yourself :)
That said, if you can get an OperationDescription object, you should be able to instantiate a DataContractSerializerOperationBehavior, but you won't be able to get an IDispatchMessageFormatter out of it... you can get an XmlObjectSerializer, though, which might, or might not, be useful for you.
Notice that an IOperationInvoker wouldn't help all that much, since that presumes you've already done message serialization/deserialization, so it's not really all that useful (and the rest of the functionality is fairly simple for basic use cases if you want to roll it yourself)

Inject behavior into WCF After or During identification of WebGet Method to call

I am trying to solve a problem where i have a WCF system that i have built a custom Host, Factory host, instance providers and service behaviors to do authentication and dependency injection.
However I have come up with a problem at the authorisation level as I would like to do authorisation at the level of the method being called.
For example
[OperationContract]
[WebGet(UriTemplate = "/{ConstituentNumber}/")]
public Constituent GetConstituent(string ConstituentNumber)
{
Authorisation.Factory.Instance.IsAuthorised(MethodBase.GetCurrentMethod().Name, WebOperationContext.Current.IncomingRequest.Headers["Authorization"]);
return constituentSoapService.GetConstituentDetails(ConstituentNumber);
}
Basically I now have to copy the Call to IsAuthorised across every web method I have. This has two problems.
It is not very testable. I Have extracted the dependecies as best that I can. But this setup means that I have to mock out calls to the database and calls to the
WebOperationContext.
I Have to Copy that Method over and over again.
What I would like to know is, is there a spot in the WCF pipeline that enables me to know which method is about to be called. Execute the authorisation request. and then execute the method based on the true false value of the authorisation response.
Even better if i can build an attribute that will say how to evaluate the method.
One possible way to do what you want might be by intercepting requests with a custom IDispatchMessageInspector (or similar WCF extension point).
The trick there, however, is that all you get is the raw message, but not where it will be processed (i.e. the method name). With a bit of work, however, it should be possible to build a map of URIs/actions and the matching method names (this is how you'd do it for SOAP, though haven't tried it for WebGet/WebInvoke yet).

Request/Response pattern in SOA implementation

In some enterprise-like project (.NET, WCF) i saw that all service contracts accept a single Request parameter and always return Response:
[DataContract]
public class CustomerRequest : RequestBase {
[DataMember]
public long Id { get; set; }
}
[DataContract]
public class CustomerResponse : ResponseBase {
[DataMember]
public CustomerInfo Customer { get; set; }
}
where RequestBase/ResponseBase contain common stuff like ErrorCode, Context, etc. Bodies of both service methods and proxies are wrapped in try/catch, so the only way to check for errors is looking at ResponseBase.ErrorCode (which is enumeration).
I want to know how this technique is called and why it's better compared to passing what's needed as method parameters and using standard WCF context passing/faults mechanisms?
The pattern you are talking about is based on Contract First development. It is, however not necessary that you use the Error block pattern in WCF, you can still throw faultexceptions back to the client, instead of using the Error Xml block. The Error block has been used for a very long time and therefore, a lot of people are accustom to its use. Also, other platform developers (java for example) are not as familiar with faultExceptions, even though it is an industry standard.
http://docs.oasis-open.org/wsrf/wsrf-ws_base_faults-1.2-spec-os.pdf
The Request / Response pattern is very valuable in SOA (Service Oriented Architecture), and I would recommend using it rather than creating methods that take in parameters and pass back a value or object. You will see the benefits when you start creating your messages. As stated previously, they evolved from Contract First Development, where one would create the messages first using XSDs and generate your classes based on the XSDs. This process was used in classic web services to ensure all of your datatypes would serialize properly in SOAP. With the advent of WCF, the datacontractserializer is more intelligent and knows how to serialize types that would previously not serialize properly(e.g., ArrayLists, List, and so on).
The benefits of Request-Response Pattern are:
You can inherit all of your request and responses from base objects where you can maintain consistency for common properties (error block for example).
Web Services should by nature require as little documentation as possible. This pattern allows just that. Take for instance a method like public BusScheduleResponse GetBusScheduleByDateRange(BusDateRangeRequest request); The client will know by default what to pass in and what they are getting back, as well, when they build the request, they can see what is required and what is optional. Say this request has properties like Carriers [Flag Enum] (Required), StartDate(Required), EndDate(Required), PriceRange (optional), MinSeatsAvailable(Option), etc... you get the point.
When the user received the response, it can contain a lot more data than just the usual return object. Error block, Tracking information, whatever, use your imagination.
In the BusScheduleResponse Example, This could return Multiple Arrays of bus schedule information for multiple Carriers.
Hope this helps.
One word of caution. Don't get confused and think I am talking about generating your own [MessageContract]s. Your Requests and Responses are DataContracts. I just want to make sure I am not confusing you. No one should create their own MessageContracts in WCF, unless they have a really good reason to do so.