using ginput in embedded matplotlib figure in PyQt4 - matplotlib

I'm trying to use the 'ginput' to measure distance in a matplotlib figure by allowing the user to mouse click the locations. I am able to do this independently in the matplotlib figure, but I'm having problems when I tried to set the figure onto a matplotlib canvas and then embed it into PyQt4 widget. Below is my code, most of which were taken from the matplotlib examples. My solution will be to click a set of locations, and pass the (x,y) coordinates to the 'dist_calc' function to get the distance.
import sys
from PyQt4 import QtGui
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
import random
import numpy as np
class Window(QtGui.QWidget):
def __init__(self, parent=None):
super(Window, self).__init__(parent)
self.fig = Figure((6.5, 5.0), tight_layout=True)
self.ax = self.fig.add_subplot(111)
self.canvas = FigureCanvas(self.fig)
self.toolbar = NavigationToolbar(self.canvas, self)
self.button = QtGui.QPushButton('Plot')
self.button.clicked.connect(self.plot)
self.ndist = QtGui.QPushButton('Measure')
self.ndist.clicked.connect(self.draw_line)
self.toolbar.addWidget(self.button)
self.toolbar.addWidget(self.ndist)
self.fig.tight_layout()
layout = QtGui.QVBoxLayout()
layout.addWidget(self.toolbar)
layout.addWidget(self.canvas)
self.setLayout(layout)
def plot(self):
data = [random.random() for i in range(20)]
self.ax.hold(False)
self.ax.plot(data, '*-')
self.canvas.draw()
def draw_line(self):
self.xy = plt.ginput(0)
x = [p[0] for p in self.xy]
y = [p[1] for p in self.xy]
self.ax.plot(x,y)
self.ax.figure.canvas.draw()
self.get_dist(x, y)
def get_dist(self, xpts, ypts):
npts = len(xpts)
distArr = []
for i in range(npts-1):
apt = [xpts[i], ypts[i]]
bpt = [xpts[i+1], ypts[i+1]]
dist =self.calc_dist(apt,bpt)
distArr.append(dist)
tdist = np.sum(distArr)
print(tdist)
def calc_dist(self,apt, bpt):
apt = np.asarray(apt)
dist = np.sum((apt - bpt)**2)
dist = np.sqrt(dist)
return dist
if __name__ == '__main__':
app = QtGui.QApplication(sys.argv)
main = Window()
main.show()
sys.exit(app.exec_())

According to this comment by one of the lead Matplotlib developers, you must not import pyplot when you're embedding Matplotlib in Qt. Pyplot sets up its own gui, mainloop and canvas, which interfere with the Qt event loop.
Changing the line self.xy = plt.ginput(0) into self.xy = self.fig.ginput(0) did not help but gave an insightful error:
AttributeError: 'FigureCanvasQTAgg' object has no attribute 'manager'
Figure.show works only for figures managed by pyplot, normally created by pyplot.figure().
In short, I don't think this is possible. ginput is a blocking function and seems only to be implemented for a Matplotlib event loop. I'm afraid that you will have to build the functionality you want using Matplotlib mouse events, which do work when embedding in PyQt. Just be sure not to use pyplot!
Edit: I just remembered, perhaps the LassoSelector is what you need.

Related

cannot plot lines on matplotlib embedded in pyqt5

Following is the codes. It plots a line via pressing a button. However, when I pressed the button, it just printed
matplotlib.lines.Line2D object at 0x11371fcc0 ......
but could not show the line on the canvas. How do you fix it?
import matplotlib
matplotlib.use("Qt5Agg")
from PyQt5 import QtCore
from PyQt5.QtWidgets import *
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.figure import Figure
import mywidgets
# mywidgets.MplCanvas is a wrapper of FigureCanvas in order to make the drawing convenient.
class ApplicationWindow(QMainWindow):
def __init__(self):
QMainWindow.__init__(self)
self.setAttribute(QtCore.Qt.WA_DeleteOnClose)
self.setWindowTitle("Hello")
self.main_widget = QWidget(self)
l = QVBoxLayout(self.main_widget)
fig1 = Figure(figsize=(5, 4))
self.sc = mywidgets.MplCanvas(self.main_widget, fig1)
l.addWidget(self.sc)
bdraw = QPushButton('Draw')
bdraw.pressed.connect(self.draw)
l.addWidget(bdraw)
self.main_widget.setFocus()
self.setCentralWidget(self.main_widget)
def draw(self):
# it does not report any error, but on lines are drawn.
line = self.sc.axes.plot([1,2,3], 'r')
print(line)
if __name__ == '__main__':
app = QApplication([])
aw = ApplicationWindow()
aw.show()
#sys.exit(qApp.exec_())
app.exec_()
You forgot to update the canvas after plotting to it.
def draw(self):
line = self.sc.axes.plot([1,2,3], 'r')
self.sc.draw_idle()

Remove option from NavigationToolbar2TkAgg?

I'm learning how to use matplotlib, and now I have a problem. When I create a Figure in "tkinter project" and give it a subplot, I use NavigationToolbar2TkAgg to create a toolbar. In the current toolbar that appears , i want to remove the configure subplot option but couldn't find a way to do so.
Is there any way to do it?
The solution to this is in principle already given in this question: How to modify the navigation toolbar easily in a matplotlib figure window?
But it may not be obvious how to use it. So we may adapt the code from here with a CustomToolbar. The Toolbars toolitems attribute can be changed as to remove the unwanted "Subplots" button.
import numpy as np
import Tkinter as tk
import matplotlib as mpl
from matplotlib.patches import Rectangle
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2TkAgg
# custom toolbar with lorem ipsum text
class CustomToolbar(NavigationToolbar2TkAgg):
toolitems = filter(lambda x: x[0] != "Subplots", NavigationToolbar2TkAgg.toolitems)
class MyApp(object):
def __init__(self,root):
self.root = root
self._init_app()
# here we embed the a figure in the Tk GUI
def _init_app(self):
self.figure = mpl.figure.Figure()
self.ax = self.figure.add_subplot(111)
self.canvas = FigureCanvasTkAgg(self.figure,self.root)
self.toolbar = CustomToolbar(self.canvas,self.root)
self.toolbar.update()
self.plot_widget = self.canvas.get_tk_widget()
self.plot_widget.pack(side=tk.TOP, fill=tk.BOTH, expand=1)
self.toolbar.pack(side=tk.TOP, fill=tk.BOTH, expand=1)
self.canvas.show()
# plot something random
def plot(self):
self.ax.plot([1,3,2])
self.figure.canvas.draw()
def main():
root = tk.Tk()
app = MyApp(root)
app.plot()
root.mainloop()
if __name__ == "__main__":
main()
Note: In newer versions of matplotlib you should use NavigationToolbar2Tk instead of NavigationToolbar2TkAgg

How save a Matplotlib figure with Pickle in a Pyqt5 environment?

I'm facing an issue and I cannot get rid of it.
I'm trying to use the Pickle package in order to save a matplotlib figure to replot it if i want to.
So far I have the below code which open a Qt window and plot some curves in it if the 'if' condition in lfpViewer.__Init__() is 1 (I put 0 only to check the pickle load function).
So I added, to the toolbar, two buttons where I can save a .pickle of the current figure or load a .pickle from a previous figure.
import pickle
from PyQt5.QtGui import *
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
import sys
import os
import matplotlib
import numpy as np
matplotlib.use('Qt5Agg')
import matplotlib.patches as patches
from matplotlib.figure import Figure
import matplotlib.pyplot as plt
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar
class SurfViewer(QMainWindow):
def __init__(self, parent=None):
super(SurfViewer, self).__init__()
self.parent = parent
self.centralWidget = QWidget()
self.color = self.centralWidget.palette().color(QPalette.Background)
self.setCentralWidget(self.centralWidget)
self.plotview = QGroupBox(" ")
self.layout_plotview = QVBoxLayout()
self.mascenelfp = lfpViewer(self)
self.layout_plotview.addWidget(self.mascenelfp)
self.centralWidget.setLayout(self.layout_plotview)
class lfpViewer(QGraphicsView):
def __init__(self, parent=None):
super(lfpViewer, self).__init__(parent)
self.parent=parent
self.scene = QGraphicsScene(self)
self.setScene(self.scene)
self.setBackgroundBrush(QBrush(self.parent.color))# self.setBackgroundBrush(QBrush(QColor(200, 200, 200)))
self.figure = plt.figure(facecolor=[self.parent.color.red()/255,self.parent.color.green()/255,self.parent.color.blue()/255]) #Figure()
self.canvas = FigureCanvas(self.figure)
self.toolbar = NavigationToolbar(self.canvas, self)
self.save_button = QPushButton()
self.save_button.setIcon(QIcon(os.path.join('icons','SaveData.png')))
self.save_button.setToolTip("Save Figure Data")
self.toolbar.addWidget(self.save_button)
self.save_button.clicked.connect(self.saveFigData)
self.load_button = QPushButton()
self.load_button.setIcon(QIcon(os.path.join('icons','LoadData.png')))
self.load_button.setToolTip("Load Figure Data")
self.toolbar.addWidget(self.load_button)
self.load_button.clicked.connect(self.loaddatapickle)
if 0:
t=np.arange(1000)
self.axes_l=self.figure.add_subplot(311)
self.axes_l.plot(t, np.sin(2*3.14*100*t))
self.axes_Y=self.figure.add_subplot(312)
self.axes_Y.plot(t, np.cos(2*3.14*100*t))
self.axes_Yi=self.figure.add_subplot(313)
self.axes_Yi.plot(t, np.tan(2*3.14*100*t))
self.canvas.setGeometry(0, 0, 1600, 500 )
layout = QVBoxLayout()
layout.addWidget(self.toolbar)
layout.addWidget(self.canvas)
self.setLayout(layout)
def loaddatapickle(self):
fileName = QFileDialog.getOpenFileName(self,'Load Data', '', 'pickle (*.pickle)')
if (fileName[0] == '') :
return
fileName = str(fileName[0])
filehandler = open(fileName , 'rb')
self.figure = pickle.load(filehandler)
filehandler.close()
self.canvas.draw()
self.parent.parent.processEvents()
return
def saveFigData(self):
fileName = QFileDialog.getSaveFileName(self,'Save Figure Data', '', 'pickle (*.pickle)')
if (fileName[0] == '') :
return
fileName = str(fileName[0])
file_pi = open(fileName, 'wb')
pickle.dump(self.figure, file_pi, -1)
file_pi.close()
return
def main():
app = QApplication(sys.argv)
ex = SurfViewer(app)
ex.showMaximized()
sys.exit(app.exec_())
if __name__ == '__main__':
main()
The save seems works (well, at least, I have a file), but the load button do absolutly nothing !
Even If I have a .pickle file, I don't know if pickle save the correct binary of the figure because when I load the pickle file in debug mode, I get lot of red stuff.
Look for the below image :
If I do the code without PyQt5, it works fine, for instance, with the below code:
import pickle
import matplotlib
import numpy as np
matplotlib.use('Qt5Agg')
import matplotlib.pyplot as plt
def loaddatapickle():
filehandler = open('test.pickle' , 'rb')
figure = pickle.load(filehandler )
filehandler.close()
return figure
def saveFigData(figure):
file_pi = open('test.pickle', 'wb')
pickle.dump(figure , file_pi, 1)
file_pi.close()
return
figure = plt.figure( ) #Figure()
Save= 0
if Save==1:
t=np.arange(1000)
axes_l=figure.add_subplot(311)
axes_l.plot(t, np.sin(2*3.14*100*t))
axes_Y=figure.add_subplot(312)
axes_Y.plot(t, np.cos(2*3.14*100*t))
axes_Yi=figure.add_subplot(313)
axes_Yi.plot(t, np.tan(2*3.14*100*t))
saveFigData(figure)
else:
figure=loaddatapickle()
plt.show()
If somebody have an idea of what is going on here, please tell me !
Have a nice day.
I can't be sure if this solves the problem you are facing, but let's give it a try. I need to mention, I don't have QT5 available and I'm working with python 2.7 and matplotlib 2.0.0. But the solution here might be valid for general cases.
When adapting the program to pyqt4 and running it, I found out that the pickling works fine. Also the unpickling did not throw any error, so I suspected that there might be a problem of displaying the unpickled figure.
What turns out to allow loading the figure is to not only load the figure into self.figure but to recreate the canvas with this unpickled figure and newly add it to the layout:
def loaddatapickle(self):
#needed to change some stuff here, since in Qt4 the dialog directly returns a string
fileName = QFileDialog.getOpenFileName(self,'Load Data', '' )
if (fileName == '') :
return
fileName = str(fileName)
filehandler = open(fileName , 'rb')
self.figure = pickle.load(filehandler)
filehandler.close()
# remove the old canvas
self.layout().removeWidget(self.canvas)
# create a new canvas
self.canvas = FigureCanvas(self.figure)
# add the new canvas at the position of the old one
self.layout().addWidget(self.canvas, 1)
self.canvas.draw()
self.parent.parent.processEvents()
return
Of course it would be better to directly update the canvas with the new figure, but I haven't found any way to do that.

Embedding "Figure Type" Seaborn Plot in PyQt (pyqtgraph)

I am using a wrapper of PyQt (pyqtgraph) to build a GUI application.
I wish to embed a Seaborn plot within it using the MatplotlibWidget. However, my problem is that the Seaborn wrapper method such as FacetGrid do not accept an external figure handle. Moreover, when I try to update the MatplotlibWidget object underlying figure (.fig) with the figure produced by the FacetGrid it doesn't work (no plot after draw). Any suggestion for a workaround?
Seaborn's Facetgrid provides a convenience function to quickly connect pandas dataframes to the matplotlib pyplot interface.
However in GUI applications you rarely want to use pyplot, but rather the matplotlib API.
The problem you are facing here is that Facetgrid already creates its own matplotlib.figure.Figure object (Facetgrid.fig). Also, the MatplotlibWidget
creates its own figure, so you end up with two figures.
Now, let's step back a bit:
In principle it is possible to use a seaborn Facetgrid plot in PyQt, by first creating the plot and then providing the resulting figure to the figure canvas (matplotlib.backends.backend_qt4agg.FigureCanvasQTAgg). The following is an example of how to do that.
from PyQt4 import QtGui, QtCore
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
import sys
import seaborn as sns
import matplotlib.pyplot as plt
tips = sns.load_dataset("tips")
def seabornplot():
g = sns.FacetGrid(tips, col="sex", hue="time", palette="Set1",
hue_order=["Dinner", "Lunch"])
g.map(plt.scatter, "total_bill", "tip", edgecolor="w")
return g.fig
class MainWindow(QtGui.QMainWindow):
send_fig = QtCore.pyqtSignal(str)
def __init__(self):
super(MainWindow, self).__init__()
self.main_widget = QtGui.QWidget(self)
self.fig = seabornplot()
self.canvas = FigureCanvas(self.fig)
self.canvas.setSizePolicy(QtGui.QSizePolicy.Expanding,
QtGui.QSizePolicy.Expanding)
self.canvas.updateGeometry()
self.button = QtGui.QPushButton("Button")
self.label = QtGui.QLabel("A plot:")
self.layout = QtGui.QGridLayout(self.main_widget)
self.layout.addWidget(self.button)
self.layout.addWidget(self.label)
self.layout.addWidget(self.canvas)
self.setCentralWidget(self.main_widget)
self.show()
if __name__ == '__main__':
app = QtGui.QApplication(sys.argv)
win = MainWindow()
sys.exit(app.exec_())
While this works fine, it is a bit questionable, if it's useful at all. Creating a plot inside a GUI in most cases has the purpose of beeing updated depending on user interactions. In the example case from above, this is pretty inefficient, as it would require to create a new figure instance, create a new canvas with this figure and replace the old canvas instance with the new one, adding it to the layout.
Note that this problematics is specific to those plotting functions in seaborn, which work on a figure level, like lmplot, factorplot, jointplot, FacetGrid and possibly others.
Other functions like regplot, boxplot, kdeplot work on an axes level and accept a matplotlib axes object as argument (sns.regplot(x, y, ax=ax1)).
A possibile solution is to first create the subplot axes and later plot to those axes, for example using the pandas plotting functionality.
df.plot(kind="scatter", x=..., y=..., ax=...)
where ax should be set to the previously created axes.
This allows to update the plot within the GUI. See the example below. Of course normal matplotlib plotting (ax.plot(x,y)) or the use of the seaborn axes level function discussed above work equally well.
from PyQt4 import QtGui, QtCore
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.figure import Figure
import sys
import seaborn as sns
tips = sns.load_dataset("tips")
class MainWindow(QtGui.QMainWindow):
send_fig = QtCore.pyqtSignal(str)
def __init__(self):
super(MainWindow, self).__init__()
self.main_widget = QtGui.QWidget(self)
self.fig = Figure()
self.ax1 = self.fig.add_subplot(121)
self.ax2 = self.fig.add_subplot(122, sharex=self.ax1, sharey=self.ax1)
self.axes=[self.ax1, self.ax2]
self.canvas = FigureCanvas(self.fig)
self.canvas.setSizePolicy(QtGui.QSizePolicy.Expanding,
QtGui.QSizePolicy.Expanding)
self.canvas.updateGeometry()
self.dropdown1 = QtGui.QComboBox()
self.dropdown1.addItems(["sex", "time", "smoker"])
self.dropdown2 = QtGui.QComboBox()
self.dropdown2.addItems(["sex", "time", "smoker", "day"])
self.dropdown2.setCurrentIndex(2)
self.dropdown1.currentIndexChanged.connect(self.update)
self.dropdown2.currentIndexChanged.connect(self.update)
self.label = QtGui.QLabel("A plot:")
self.layout = QtGui.QGridLayout(self.main_widget)
self.layout.addWidget(QtGui.QLabel("Select category for subplots"))
self.layout.addWidget(self.dropdown1)
self.layout.addWidget(QtGui.QLabel("Select category for markers"))
self.layout.addWidget(self.dropdown2)
self.layout.addWidget(self.canvas)
self.setCentralWidget(self.main_widget)
self.show()
self.update()
def update(self):
colors=["b", "r", "g", "y", "k", "c"]
self.ax1.clear()
self.ax2.clear()
cat1 = self.dropdown1.currentText()
cat2 = self.dropdown2.currentText()
print cat1, cat2
for i, value in enumerate(tips[cat1].unique().get_values()):
print "value ", value
df = tips.loc[tips[cat1] == value]
self.axes[i].set_title(cat1 + ": " + value)
for j, value2 in enumerate(df[cat2].unique().get_values()):
print "value2 ", value2
df.loc[ tips[cat2] == value2 ].plot(kind="scatter", x="total_bill", y="tip",
ax=self.axes[i], c=colors[j], label=value2)
self.axes[i].legend()
self.fig.canvas.draw_idle()
if __name__ == '__main__':
app = QtGui.QApplication(sys.argv)
win = MainWindow()
sys.exit(app.exec_())
A final word about pyqtgraph: I wouldn't call pyqtgraph a wrapper for PyQt but more an extention. Although pyqtgraph ships with its own Qt (which makes it portable and work out of the box), it is also a package one can use from within PyQt. You can therefore add a GraphicsLayoutWidget to a PyQt layout simply by
self.pgcanvas = pg.GraphicsLayoutWidget()
self.layout().addWidget(self.pgcanvas)
The same holds for a MatplotlibWidget (mw = pg.MatplotlibWidget()). While you can use this kind of widget, it's merely a convenience wrapper, since all it's doing is finding the correct matplotlib imports and creating a Figure and a FigureCanvas instance. Unless you are using other pyqtgraph functionality, importing the complete pyqtgraph package just to save 5 lines of code seems a bit overkill to me.
Here is exact copy of the accepted answer but using PYQT5:
from PyQt5 import QtCore, QtGui, QtWidgets
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.figure import Figure
import sys
import seaborn as sns
tips = sns.load_dataset("tips")
class MainWindow(QtWidgets.QMainWindow):
send_fig = QtCore.pyqtSignal(str)
def __init__(self):
super(MainWindow, self).__init__()
self.main_widget = QtWidgets.QWidget(self)
self.fig = Figure()
self.ax1 = self.fig.add_subplot(121)
self.ax2 = self.fig.add_subplot(122, sharex=self.ax1, sharey=self.ax1)
self.axes=[self.ax1, self.ax2]
self.canvas = FigureCanvas(self.fig)
self.canvas.setSizePolicy(QtWidgets.QSizePolicy.Expanding,
QtWidgets.QSizePolicy.Expanding)
self.canvas.updateGeometry()
self.dropdown1 = QtWidgets.QComboBox()
self.dropdown1.addItems(["sex", "time", "smoker"])
self.dropdown2 = QtWidgets.QComboBox()
self.dropdown2.addItems(["sex", "time", "smoker", "day"])
self.dropdown2.setCurrentIndex(2)
self.dropdown1.currentIndexChanged.connect(self.update)
self.dropdown2.currentIndexChanged.connect(self.update)
self.label = QtWidgets.QLabel("A plot:")
self.layout = QtWidgets.QGridLayout(self.main_widget)
self.layout.addWidget(QtWidgets.QLabel("Select category for subplots"))
self.layout.addWidget(self.dropdown1)
self.layout.addWidget(QtWidgets.QLabel("Select category for markers"))
self.layout.addWidget(self.dropdown2)
self.layout.addWidget(self.canvas)
self.setCentralWidget(self.main_widget)
self.show()
self.update()
def update(self):
colors=["b", "r", "g", "y", "k", "c"]
self.ax1.clear()
self.ax2.clear()
cat1 = self.dropdown1.currentText()
cat2 = self.dropdown2.currentText()
print (cat1, cat2)
for i, value in enumerate(tips[cat1].unique().get_values()):
print ("value ", value)
df = tips.loc[tips[cat1] == value]
self.axes[i].set_title(cat1 + ": " + value)
for j, value2 in enumerate(df[cat2].unique().get_values()):
print ("value2 ", value2)
df.loc[ tips[cat2] == value2 ].plot(kind="scatter", x="total_bill", y="tip",
ax=self.axes[i], c=colors[j], label=value2)
self.axes[i].legend()
self.fig.canvas.draw_idle()
if __name__ == '__main__':
import sys
app = QtWidgets.QApplication(sys.argv)
ex = MainWindow()
sys.exit(app.exec_())
While any matplotlib plots can be embedded in pyqt5 the same way, it's important to note that the UI could get slow as the sizeof the dataset grows. But I found such approaches handy to parse and plot log files by employing regex functionalities.

How to implement QThread correctly with matplotlib and pyplot

I understand that there have been one or two other questions posted that are related but not exactly what I need. I'm building this gui that activates a module by clicking a button. This python module that gets activated by pushing the button generates heatmaps from multiple pandas dataframes and saves those images, which in turn is then saved into an xlsx using pandas ExcelWriter.
I've tried to implement QThread, as other stackoverflow examples tried to explain similar problems but I continue getting this error: "It is not safe to use pixmaps outside the GUI thread". I understand that technically I'm not creating the heatmap inside the MAIN gui thread but I thought with QThread that I am still inside "a" gui thread. These dataframes that the heatmaps are based off of can be of a large size at times and I am somewhat grasping the concept of sending a signal to the main gui thread when a heatmap is to be created and have the heatmap function inside the main gui class...but I fear that will be troublesome later in passing so much data around..this is more like pipelining than threading. I just want this working thread to create these images and save them and then take those saved files and save them into an xlsx without interrupting the main gui..
(NOTE: This is a simplified version, in the real program there will be several of these threads created almost simultaneously and inside each thread several heatmaps will be created)
---main.py---
import sys
from MAIN_GUI import *
from PyQt4 import QtGui, QtCore
from excel_dummy import *
if __name__=="__main__":
app = QtGui.QApplication(sys.argv)
class MAIN_GUI(QtGui.QMainWindow):
def __init__(self):
super(MAIN_GUI, self).__init__()
self.uiM = Ui_MainWindow()
self.uiM.setupUi(self)
self.connect(self.uiM.updateALL_Button,QtCore.SIGNAL('clicked()'),self.newThread)
def newThread(self):
Excelify = excelify()
Excelify.start()
self.connect(Excelify,QtCore.SIGNAL('donethread(QString)'),(self.done))
def done(self):
print('done')
main_gui = MAIN_GUI()
main_gui.show()
main_gui.raise_()
sys.exit(app.exec_())
---excel_dummy.py---
import os, pandas as pd
from pandas import ExcelWriter
import numpy as np
import seaborn.matrix as sm
from PyQt4 import QtCore
from PyQt4.QtCore import QThread
from matplotlib.backends.backend_agg import FigureCanvas
from matplotlib.figure import Figure
import time
class excelify(QThread):
def __init__(self):
QThread.__init__(self)
def run(self):
path = 'home/desktop/produced_files'
with ExcelWriter(path + '/final.xlsx', engine='xlsxwriter') as writer:
workbook = writer.book
worksheet = workbook.add_worksheet()
heatit = self.heatmap()
worksheet.insert_image('C3',path + '/' + 'heat.jpg')
worksheet.write(2, 2, 'just write something')
writer.save()
print('file size: %s "%s"' % (os.stat(path).st_size, path))
time.slee(0.3)
self.emit(QtCore.SIGNAL('donethread(QString)'),'')
def heatmap(self):
df = pd.DataFrame(np.array([[1,22222,33333],[2,44444,55555],[3,44444,22222],[4,55555,33333]]),columns=['hour','in','out'])
dfu = pd.DataFrame(df.groupby([df.in,df.hour]).size())
dfu.reset_index(inplace=True)
dfu.rename(columns={'0':'Count'})
dfu.columns=['in','hour','Count']
dfu_2 = dfu.copy()
mask=0
fig = Figure()
ax = fig.add_subplot(1,1,1)
canvas = FigureCanvas(fig)
df_heatmap = dfu_2.pivot('in','hour','Count').fillna(0)
sm.heatmap(df_heatmap,ax=ax,square=True,annot=False,mask=mask)
fig.savefig(path + '/' + heat.jpg')
---MAIN_GUI.py---
from PyQt4 import QtCore,QtGui
try:
_fromUtf8 = QtCore.QString.fromUtf8
except AttributeError:
def _fromUtf8(s):
return s
try:
_encoding = QtGui.QApplication.unicodeUTF8
def _translate(context, text, disambig):
return QtGui.QApplication.translate(context, text, disambig, _encoding)
except AttributeError:
def _translate(context, text, disambig):
return QtGui.QApplication.translate(context, text, disambig)
class Ui_MainWindow(object):
def setupUi(self, MainWindow):
MainWindow.setObjectName(_fromUtf8("MainWindow"))
MainWindow.resize(320,201)
self.centralwidget = QtGui.QWidget(MainWindow)
self.centralwidget.setObjectName(_fromUtf8("centralwidget"))
self.updateALL_Button = QtGui.QPushButton(self.centralwidget)
self.updateALL_Button.setGeometry(QtCore.QRect(40,110,161,27))
self.updateALL_Button.setFocusPolicy(QtCore.Qt.NoFocus)
self.updateALL_Button.setObjectName(_fromUtf8("Options_updateALL_Button"))
MainWindow.setCentralWidget(self.centralwidget)
self.menubar = QtGui.QMenuBar(MainWindow)
self.menubar.setGeometry(QtCore.QRect(0, 0, 320, 24))
self.menubar.setObjectName(_fromUtf8("menubar"))
MainWindow.setMenuBar(self.menubar)
self.statusbar = QtGui.QStatusBar(MainWindow)
self.statusbar.setObjectName(_fromUtf8("statusbar"))
MainWindow.setStatusBar(self.statusbar)
self.retranslateUi(MainWindow)
QtCore.QMetaObject.connectSlotsByName(MainWindow)
def retranslateUi(self,MainWindow):
MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow", None))
self.updateALL_Button.setText(_translate("MainWindow", "updateALL", None))
Even though you are explicitely using the Agg backend to generate your figure, it looks like Seaborn is still using the default backend on your system, which is most likely Qt4Agg, an interactive backend. We want Seaborn to use a non-interactive backend instead to avoid any error (see matplotlib documentation for more details about backends). To do so, tell Matplotlib in your imports to use the Agg backend and import Seaborn after Matplotlib.
You will also need to save your figure as a png, since jpg is not supported by the Agg backend. Unless you have some specific reasons for using jpg, png is usually a better format for graphs.
Finally, you could use a memory buffer instead of saving your images to a temporary file before saving them in an Excel Workbook. I haven't tested it, but it will probably be faster if you are working with large files.
Below is a MWE I've written which includes the aformentioned points and which does not give any error on my system in Python3.4:
import pandas as pd
import time
from pandas import ExcelWriter
import numpy as np
from PyQt4 import QtCore, QtGui
import matplotlib as mpl
mpl.use('Agg')
from matplotlib.backends.backend_agg import FigureCanvas
import seaborn.matrix as sm
try: # Python 2 (not tested)
from cStringIO import StringIO as BytesIO
except ImportError: # Python 3
from io import BytesIO
class MAIN_GUI(QtGui.QWidget):
def __init__(self):
super(MAIN_GUI, self).__init__()
self.worker = Excelify()
btn = QtGui.QPushButton('Run')
disp = QtGui.QLabel()
self.setLayout(QtGui.QGridLayout())
self.layout().addWidget(btn, 0, 0)
self.layout().addWidget(disp, 2, 0)
self.layout().setRowStretch(1, 100)
btn.clicked.connect(self.worker.start)
self.worker.figSaved.connect(disp.setText)
class Excelify(QtCore.QThread):
figSaved = QtCore.pyqtSignal(str)
def run(self):
self.figSaved.emit('Saving figure to Workbook.')
t1 = time.clock()
image_data = self.heatmap()
with ExcelWriter('final.xlsx', engine='xlsxwriter') as writer:
wb = writer.book
ws = wb.add_worksheet()
ws.insert_image('C3', 'heat.png', {'image_data': image_data})
writer.save()
t2 = time.clock()
self.figSaved.emit('Done in %f sec.' % (t2-t1))
def heatmap(self):
df = pd.DataFrame(np.array([[1, 22222, 33333], [2, 44444, 55555],
[3, 44444, 22222], [4, 55555, 33333]]),
columns=['hour', 'in', 'out'])
dfu = pd.DataFrame(df.groupby([df.out, df.hour]).size())
dfu.reset_index(inplace=True)
dfu.rename(columns={'0': 'Count'})
dfu.columns = ['in', 'hour', 'Count']
fig = mpl.figure.Figure()
fig.set_canvas(FigureCanvas(fig))
ax = fig.add_subplot(111)
df_heatmap = dfu.pivot('in', 'hour', 'Count').fillna(0)
sm.heatmap(df_heatmap, ax=ax, square=True, annot=False, mask=0)
buf= BytesIO()
fig.savefig(buf, format='png')
return(buf)
if __name__ == '__main__':
import sys
app = QtGui.QApplication(sys.argv)
w = MAIN_GUI()
w.show()
w.setFixedSize(200, 100)
sys.exit(app.exec_())