I have a framework target in which most of the classes are written in Objective C. Recently we have started introducing Swift files in the code. We make private Objective C files available to swift code using modules(more on this can be found here).
This approach worked well until recently when I tried subclassing one of my Objective C class using Swift, I got an error in the Generated MyFramework-Swift.h file which said "Module TestSwift not found" where TestSwift is the name of the module I provided in the modulemap file. However, if I try subclassing the classes which are listed in the umbrella header of my framework(public classes), it works.
import TestSwift
#objc public class NewSwiftClass: ExistingObjectiveCClass {
//throws error in the generated MyFramework-Swift.h file while compiling
}
If I keep my swift class internal, it works
import TestSwift
#objc class NewSwiftClass: ExistingObjectiveCClass {
//works fine
}
but I would like to use this Swift class in my Objective C files hence cannot keep it internal.
TL;DR: I'm unable to subclass an existing Objective C class using Swift inside a framework target.
I believe this is impossible in Swift because it's impossible in Objective-C.
If you have a class A in your framework that is not part of your umbrella header, and you want B to subclass it and be in your umbrella header, you can't do it.
You have to declare the inheritance in your interface declaration #interface B: A, which goes in B's header and thus in the umbrella header. But the compiler is going to complain: "What is A?" You could import A's header there, but unlike Swift's import, Objective-C's #import literally drops the contents of A's header into the B header. Which means A is now in the umbrella header too i.e. public.
Mixing Swift with Objective-C isn't magic. The compiler still needs to be able to make a valid Objective-C header that accurately describes the Swift interface. So unless you can think of a way to make Objective-C do this, you can't do it in Swift.
The only alternative I can think of is to change your "is a" relationship into a "has a" relationship i.e.
#objc public class NewSwiftClass {
let parent: ExistingObjectiveCClass
}
obviously you lose most of the benefits of actual inheritance but you'll still have the parent around as a substitute for super. You could also declare a public protocol that both classes conform to to ensure that you get consistency between their methods.
What is the use of bridging header?
Is it just for using Objective-C and Swift code in the same project?
Should we avoid using bridging header?
Say, if there are two third party library which are very similar; one of them is in Objective-C and other is in Swift. Should we use the Swift library or use Objective-C library. Are there any downside of using bridging headers?
Apple has written a great book that covers this in depth. It can be found here:
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/MixandMatch.html
I will quote it to answer your questions:
"What is the use of bridging header?
Is it just for using Objective-C and Swift code in the same project?"
To import a set of Objective-C files in the same app target as your Swift code, you rely on an Objective-C bridging header to expose those files to Swift. Xcode offers to create this header file when you add a Swift file to an existing Objective-C app, or an Objective-C file to an existing Swift app.
The answer to this question is yes. It is just there to make Swift and Objective-C work together in the same project.
"Should we avoid using bridging header? Say, if there are two third party library which are very similar; one of them is in Objective-C and other is in Swift. Should we use the Swift library or use Objective-C library. Are there any downside of using bridging headers?"
There are always tradeoffs. The first answer to this is no you should not avoid using a bridging header; however, as far as third party libraries you have to look at many factors. Which one has more functionality? Is it being maintained and/or added to frequently?
Using an Objective-C library will also add things to be aware of and work around. From the book:
Troubleshooting Tips and Reminders
Treat your Swift and Objective-C files as the same collection of code, and watch out for naming collisions.
If you’re working with frameworks, make sure the Defines Module (DEFINES_MODULE) build setting under Packaging is set to “Yes".
If you’re working with the Objective-C bridging header, make sure the Objective-C Bridging Header (SWIFT_OBJC_BRIDGING_HEADER) build setting under Swift Compiler - Code Generation is set to a path to the bridging header file relative to your project (for example, “MyApp/MyApp-Bridging-Header.h").
Xcode uses your product module name (PRODUCT_MODULE_NAME)—not your target name (TARGET_NAME)—when naming the Objective-C bridging header and the generated header for your Swift code. For information on product module naming, see Naming Your Product Module.
To be accessible and usable in Objective-C, a Swift class must be a descendant of an Objective-C class or it must be marked #objc.
When you bring Swift code into Objective-C, remember that Objective-C won’t be able to translate certain features that are specific to Swift. For a list, see Using Swift from Objective-C.
If you use your own Objective-C types in your Swift code, make sure to import the Objective-C headers for those types before importing the Swift generated header into the Objective-C .m file you want to use your Swift code from.
Swift declarations marked with the private modifier do not appear in the generated header. Private declarations are not exposed to Objective-C unless they are explicitly marked with #IBAction, #IBOutlet, or #objc as well.
For app targets, declarations marked with the internal modifier appear in the generated header if the app target has an Objective-C bridging header.
For framework targets, only declarations with the public modifier appear in the generated header. You can still use Swift methods and properties that are marked with the internal modifier from within the Objective-C part of your framework, as long they are declared within a class that inherits from an Objective-C class. For more information on access-level modifiers, see Access Control in The Swift Programming Language (Swift 2.2).
Que : What is the use of bridging header?
Its correct to say, Bridging header allows user to use Objective-C classes/files in their swift code in same project.
A Swift bridging header allows you to communicate with your old Objective-C classes from your Swift classes. You will need one if you plan to keep portions of your codebase in Objective-C. It should be noted that even if you decide to convert all of your code to Swift, some classes or libraries you may use such as SVProgressHUD haven’t been rewritten in Swift and you will need to use a bridging header to use them.
Que : Should we avoid using bridging header?
Considering your question there are 2 possible cases.
case 1 : Lets say your project is developed in Objective-C and now you are developing new features using swift in it, in this case you have to have BridgingHeader as you need access of your Objective-C classes in swift code.
case 2 : If your project is developed in swift then there is no need to have Bridging header, as well if its in only Objective-C and you are not planning to move it in swift then also you don't need it.
Read more about Using swift with cocoa and Objective-C in apple documentation.
Following apple document image indicates usage of Bridging header
No, there are no downsides to using Obj-c code in your Swift project. Bridging header only exposes your Obj-c files to Swift. The two languages can coexist in the same project with no problems, as you can expose your Swift code to the Obj-c just as easily too - xCode will generate a header for all of your public Swift declarations. Although everything is possible, if you start a new project you should stick to one language so the project is easier to understand. For example if you decide on Swift you should only use Obj-c for libraries that are not available in Swift.
The bridging header allows the use of Swift and Objective-C in the same project. There are no downsides to having a bridging header in your project as the two languages can work well together within the same app.
Removing a bridging header from a project after it has been added may cause errors, as it is referenced in other places in the project when it is created.
If you only intend to use one of the two languages, a bridging header is unnecessary. On the other hand, if you are using both Swift and Objective-C, a bridging header is required and will not cause any issues.
Here is a link to find more information on the subject:
https://developer.apple.com/library/ios/documentation/Swift/Conceptual/BuildingCocoaApps/MixandMatch.html
I hope that answered your question. Good luck with your project!
What is the use of bridging header?
You have already got that answer. You're right.
Should we avoid using bridging header?
No. Its good when a third party library developed in Obj-C and may not available in Swift yet. You should use bridging header to have a best library for your app.
It depends which on you choose. In case of networking? If your project is in Obj-C based you can use AFNetworking or with the case of Swift you can use AlamoFire, you can still use AFNetworking in Swift but its not suggestable.
Bridging headers are a great way to get Objective - C code into your Swift project. If you have two libraries, one that is in Swift and one that is in Objective - C, choose the one that will offer more functionality in your app. If they offer the same functionality, I'd just go with the Swift library -> My reasoning: if the Objective-C library isn't widely used and there aren't many tutorials on how to convert the Objective - C code into Swift, it can be very time consuming to figure it out on your own. If you use a Swift library, the code is already formatted in the correct language, saving you time and potentially money (depending on if this is a hobby for you or not). As far as any downsides to using a bridging header, their really isn't! With so many libraries written in Objective-C, you almost need a bridging header in your app. Take, for example, Reachability (Here is a video on implementation in Swift). This is a library that Apple created to handle network interruptions in your app. This is a great tool for developers and requires a bridging header. Here is a great YouTube video on how to use a bridging header, but if you add a header file into your Swift file, Xcode typically asks to crete one for you. Hope this helps!
So I think I have this kinda clear, based on this blog post and my experiments:
what's included by #import MyPod; is the auto-generated MyPod-umbrella.h header, which imports all the public headers according to the Podspec
the auto-generated module map also permits explicit import of those and only those same public headers
what's included by #import <MyPod/MyPod.h> header is a MyPod.h header that I still need to make, but it can import anything I choose that's in the module map
What I was hoping to achieve, however, was that the header for either #import or #import to include most but not all of my pod's public headers. I'd like one of my public headers contain optional declarations that are normally omitted, to only be included manually from the few .m files that need it. But it seems to not be possible when code uses #import since the includes in that umbrella header always matches all the public headers.
Specifying a custom module map is possible and would work, but doing that seems to precludes the benefits of auto-generated map & umbrella header.
Would it be kosher to do some macro & #ifdef tricks to skip the contents of my "optional" header when included by the #import but then use the contents if that header is pulled in again with an #include? This sounds ugly, but is it my only option?
I found problems with all the #ifdef tricks I attempted when using framework cocoapods, though I'm sure they'd work when not. But I don't really want to be biased against frameworks and would like a solution for both.
So to take another approach, I found its not hard for a project to access a pod's private headers! See here and here (that last tip is for Swift, but I'm sure the right #import will work in Objective-C too).
So in my cocoapod I'm going to make the optional header private, and then rely on my users to use those methods to access it if desired.
Well, I want to know how to move some parts of framework from objective-c to swift without big pain
Ok, as far as I know:
1) Any project not a framework.
You make Swift-Bridging-Header.h or CatsAndGuns-Bridging-Header.h and put in it many import items.
You assure yourself in Build Settings -> (Search Swift) -> Objective-C Bridging Header. And put here your name.
Also check Packaging -> Defines Modules -> Yes
2) Framework
Well, you want to develop framework with mix objective-c and swift together.
And here you have pain: you can't use bridging headers in framework targets.
So, you come to google or documentation and start to read. Documentation
Ok, now you feel free and gorgeous about your knowledge, but.. you still don't know how to do it.
Create umbrella header and name it: YourProjectName-Swift.h. CatsAndGuns-Swift.h, ok.
Make it visible to framework level, so, navigate to right bar and put target membership -> your_framework_target (CatsAndGuns.framework in my case, of course) -> Public
And everything should be ok? remember to put every import as: #import <CatsAndGuns/Rocket.h>
Ok, let's check Rocket.h file in our framework. it is a Project-visible file, so, can it be accessed via in umbrella header (oh, module-swift.h) or not?
Now I have:
No bridging header in project ( as i understand from answer )
Manually created umbrella header with project-visible Rocket.h: #import <CatsAndGuns/Rocket.h>
errors in swift class that it can't see objective-c declarations.
Product module name without spaces.
There is a framework at
/Applications/Xcode.app/Contents/OtherFrameworks/DevToolsCore.framework
and I was wondering if it's possible to get the header information somehow?
It's a framework that theoretically allows to create plugins for XCode.
The header looks like this
and I can't access the headers as usual with public frameworks. But there has to be a way, because I found some resources online that list the classes, but the class descriptions are not available anymore: https://github.com/phausler/XcodeAPI/blob/gh-pages/Frameworks/DevToolsCore.md
You can use the class-dump utility to extract all Objective-C classes alongside with ivar and methods information.