Where to place registration logic for multi-tenanted database design? - sql

I am currently in the process of turning a single-tenanted application into a multi-tenanted application.
As far as the database design goes, I have chosen the 'Shared Database, Separate Schema' solution as described within this article.
Following the instruction provided; I am required to perform the following steps, each and every time a new tenant is introduced:
Create new Schema for tenant.
Create new database user with access to the newly created schema(and only this schema).
Create necessary tables within the newly created schema.
My question is, where should this logic be placed?
My initial thought was within a stored procedure, however I am unsure of this decision and looking for some clarification.

I would like you to look into this implementation from a deployment perspective too.
Considering the fact that executing a job in Sql would be faster or even raising a tenant created event which can run a job that will be creating the necessary db infrastructure. At the end, the job will call a rest end point your app that can activate the tenant, so that the tenant can get into the app and use.
There are many options to be considered in the approach because it will be fully distributed and prone to failures.

Related

How to model data flows with a SQL backend?

My question is not about a specific code. I am trying to automate a business data governance data flow using a SQL backend. I have put a lot of time searching the internet or reaching out people for the right direction, but unfortunately I have not yet found something promising so I have a lot of hope I would find some people here to save from a big headache.
Assume that we have a flow (semi static/dynamic flow) for our business process. We have different departments owning portions of data. we need to take different actions during the flow such as data entry, data validation, data exportation, approvals, rejections, notes etc and also automatically define deadlines, create reports of overdue tasks and people accountable for them etc.
I guess the data management part would not be extremely difficult, but how to write an application (codes) to run the flow (workflow engine) is where I struggle. Should I use triggers or should I choose to write codes to frequently run queries to push the completed steps to next step, how I can use SQL tables to keep the track of flow etc
If one could give me some hints on this matter, I would be greatly appreciated
I would suggest using the sql server integration services SSIS, you can easily mange the scripts and workflow based on some lookup selections, and also you can schedule SSIS package on timely bases to trigger and do the job.
It's hard task to implement application server on sql server. Also it's will be very vendor depended solution. Best way i think to use sql server as data storage and some application server for business logic over data storage.

Execute sql statement before normal execution with aop

I'm trying to create a Multitenant application with spring.
I'm trying to have a different schema for each Tenant on a PostgreSql database.
I first created a TenantAwareDataSource extending org.springframework.jdbc.datasource.AbstractDataSource where basically I manage a Map of org.apache.commons.dbcp.BasicDataSource, configuring setConnectionInitSqls() for each tenant. (The datasource the project had before was org.apache.commons.dbcp.BasicDataSource)
But then discussing it with a friend, we came up with the idea of changing the schema for every statment executed with an aspect (aop), simply adding a set search_path to statement just before normal execution.
This could greatly simplify the problems related to having too many connections to the database (a connection pool for every tenant at any given time).
Has anybody executed additional statements using AOP?
Any pitfalls to overcome?
I'm thinking on put back org.apache.commons.dbcp.BasicDataSource and intercept java.sql.Statements.exe*(..)
I'm not very experienced with Spring persistence. Or SQL statement execution interception for that matter (haha).
Is it ok?
I found this article but I don't think I need to obtain a reference for each connection.
Am I right?
Also found this one. The author is using org.springframework.jdbc.core.JdbcOperations. Not sure it's the case in my Spring Roo generated project.
Thank you all.

GRANT Database Permissions for specific tables and the validity of this as a security practice?

my question is rather simple.
Can i grant permissions on a database table wise? something in the lines:
User Management has permission to select, update, insert and delete on table Projects
User Supervisor has permission to select, update, insert on table Projects
User Colaborator has permission to select on table Projects
If so, I could set up a system to create database users based on the levels of access of my application, much like the examples above.
Is it a valid mechanism to use this to secure a application?
is it worth on a real world application?
i've used PHP with Oracle and MySQL, but I'm look for a database/language agnostic answer, but any example would be useful.
pushing my luck a bit, what about per record permission granting?
also, what about table schemas, are they a more acceptable then table based permissions?
The main problem with using database security would be that you need separate connections for each user rather than being able to use a "service user" for the connection from your application server to your DB server. That would mean that you would no longer be able to use database connection pooling have to "connect" and "disconnect" from the database for every user request, which is not very efficient as connections are relatively expensive.
Having said that, there is good reason for using separate users in the database, such as DATA_USER (which the application server connects as) and DATA_OWNER (which owns all the tables but is used only for DB maintenance) and then only give DATA_USER the permissions that it needs to, e.g. only select on a lookup table. By separating DATA_USER and DATA_OWNER you can add an additional level of confidence that your application won't issue DDL commands (e.g. dropping a table).
Answer to part 1:
Yes as long as you handle the responses correctly.
Part 2:
It's not as good as implementating security in the application layer, as most applications will need flexibility in the solution (what if you want a user to get increased privledges, have to code in lots of alter/deny/grant scripts)
Part 3: (Speaking from purely MSSQL) Row-level permissions aren't possible. Create custom views for this purpose.

What strategies are available for migrating Access databases to SQL server-based applications?

I'm considering undertaking a project to migrate a very large MS Access application to a new system based on SQL Server. The existing system is essentially an ERP application with a couple of dozen users, all sharing the Access database over the network. The database has around 300 tables and lots of messy VBA code. This system is beginning to break down (actually, it's amazing it has worked as long as it has).
Due to the size and complexity of the Access application, a 'big bang' approach is not really feasible. It seems sensible to rope off chunks of functionality and migrate them piecemeal to the new system. During the migration process, which I expect to take several months, there may be a need for both databases to be in operation and be able to query and modify data in both systems.
I have considered using something like the ADO.NET Entity Framework to implement a data abstraction layer to handle this, but as far as I can tell, the Entity Framework has no Access provider.
Does my approach seem reasonable? What other strategies have people used to accomplish similar goals?
You may find that the main problem is using the MS Access JET engine as the backend. I'm assuming that you do have an Access FE (frontend) with all objects except tables, and a BE (backend - tables only).
You may find that migrating the data to SQL Server, and linking the Access FE to that, would help alleviate problems immediately.
Then, if you don't want to continue to use MS Access as the FE, you could consider breaking it up into 'modules', and redesign modules one by one using a separate development platform.
We faced a similar situation a few years ago, but we knew from the beginning that we'll have to swich one day to SQL SERVER, so the whole code was written to work from an Access client to both Access AND SQL server databases.
The idea of having a 'one-step' migration to SQL server is certainly the easier way to manage this on the database side, and there are many tools for that. But, depending on the way your client app talks to the database, your code might then not work properly. If, for example, your code includes a lot of SQL instructions (or generates them on the fly by, for example, adding filters to SELECT instructions), your syntax might not be 'SQL server' compatible: access wildcards, dates, functions, will not work on SQL server.
In addition to this, and as said by #mjv, the other drawback of a one time switch to MS SQL is that you will inheritate many of the problems from the original database: wrong or inapropriate field names, inapropriate primary/foreign key policies, hidden one-to-many relations that you'd like to implement in the new database model, etc.
I'll propose here some principles and rules to implement a 'soft transition' solution, which clearly best fits you. Just to say that it's not going to be easy, but it's definitely very interesting, paticularly when dealing with 300 tables! Lucky you!
I assume here that yo have the ability to update the client code, and you'd prefer to keep at all times the same client interface. It is of course possible to have at transition time two different interfaces, one for each database, but this will be very confusing for the users, and a permanent source of frustration for them.
According to me, the best solution strongly depend on:
The original connection technology,
and the way data is managed in your
client's code: Access linked tables,
ODBC, ADODB, recordset, local
tables, forms recordsources, batch
updating, etc.
The possibilities to split your
tables and your app in 'mostly
independant' modules.
And you will not spare the following mandatory activities:
setup up of a transfer
procedure from Access database to SQL server. You
can use already existing tools (The
access upsizing wizard is very poor,
so do not hesitate to buy a real
one, like SSW or EMS SQL Manager,
very powerfull) or build your own
one with Visual Basic. If your plan
is to make some changes in Data
Definition, you'll definitely have
to write some code. Keep in mind
that you will run this code
maaaaaany times, so make sure that
it includes all time-saving
instructions that will allow you to
restart the process from the start
as many times as you want. You will
have to choose between 2 basic data
import strategies when importing data:
a - DELETE existing record, then INSERT imported record
b - UPDATE existing record from imported record
If you plan to switch to new Primary\foreign key types, you'll have to keep track of old identifiers in your new database model during the transition period. Do not hesitate to switch to GUID Primary Keys at this stage, especially if the plan is to replicate data on multiple sites one of these days.
This transfer procedure will be divided in modules corresponding to the 'logical' modules defined previously, and you should be able to run any of these modules independantly (keeping of course in mind that they'll probably have to be implemented in a specific order, where the 'customers' module has to run before the 'invoicing' module).
implement in your client's code the possibility to connect to both original ms-access database and new MS SQL server. Ideally, you should be able to manage from within your code both connections for displaying and validating data.
This possibility will be implemented by modules, where you will have, for each of them, a 'trial period', ie the possibility to choose at testing time between access connection and sql connection when using the module. Once testing is done and complete, the module can then be run in exclusive SQL server mode.
During the transfer period, that can last a few months, you will have to manage programatically the database constraints that exist between 'SQL server' modules and 'Access' modules. Going back to our customers/invoicing example, the customers module will be first switched to MS SQL. Before the Invoicing module can be switched, you'll have to implement programmatically the one to many relations between Customers and Invoices, where each of the tables will be in a different database. Such a constraint can be implemented on the Invoice form by populating the Customers combobox with the Customers recordset from the SQL server.
My proposal is to build your modules following your database model, allways beginning with the 'one' tables or your 'one-to-many' relations: basic lists like 'Units', 'Currencies', 'Countries', shall be switched first. You'll have a first 'hands on' experience in writting data transfer code, and managing a second connection in your client interface. You'll be then able to 'go up' in your database model, switching the 'products' and 'customers' tables (where units, countries and currencies are foreign keys) to the new server.
Good luck!
I would second the suggestion to upsize the back end to SQL Server as step 1.
I would never go to the suggested Step 2, though (i.e., replacing the Access front end with something else). I would instead suggest investing the effort in fixing the flaws of the schema, and adjusting the Access app to work with the new schema.
Obviously, it is never the case that everything just works hunky dory when you upsize -- some things that were previously quite fast will be dogs, and some things that were previously quite slow will be fast. And I've found that it is often the case that the problems are very often not where you anticipate that they will be. You can only figure out what needs to be fixed by testing.
Basically, anything that works poorly gets re-architected, or moved entirely server-side.
Leverage the investment in the existing Access app rather than tossing all that out and starting from scratch. Access is a fine front end for a SQL Server back end as long as you don't assume it's going to work just the same way as it would with a Jet/ACE back end.
...thinking out loud... I think this may work.
I appears that the complexity of the application resides in the various VBA modules rather than the database table/schema themselves. A possible migration path could therefore be to first migrate the data storage to SQL server, exactly as-is, as follow:
prevent any change to the data for a few hours
duplicate all tables to the SQL server; be sure to create the same indexes as well.
create linked tables to ODBC Source pointing to the newly created tables on SQL Server
these tables should have the very same name as the original tables (which therefore may require being renamed, say with a leading underscore, for possible reference).
Now, the application can be restarted and should be using the SQL tables rather than the Access tables. All logic should work as previously (right...), possible slowness to be expected, depending on the distance between the two machines.
All the above could be tested in about a day's work or so; the most tedious being the creation of the tables on SQL server (much of that can be automated, I'm sure). The next most tedious task is to assert that the application effectively works as previously, but with its storage on SQL.
EDIT: As suggested by a comment, I should stress that there is a [fair ?] possibility that the application would not readily work so smoothly under SQL server back-end, and could require weeks of hard work in testing and fixing. However, and unless some of these difficulties can be anticipated because of insight into the application not expressed in the question, I propose that attempting the "As-is" migration to SQL Server should be considered; after all, it may just work with minimal effort, and if it doesn't, we'd know this very quickly. This is therefore a hi-return, low risk proposal...
The main advantage sought with this approach is that there will be a single storage during the [as the OP expects] longer period during which the old Access application will co-exist with the new application.
The drawback of this approach, is that, at least at first, the schema of original database is reproduced verbatim, i.e. including some of its known quirks and legacy-herited idiosyncrasies. These schema issues (and the underlying application logic) can be in time corrected, but this is of course less easy than if the new application starts ab initio, with its own, separate, storage, and distinct schema.
After the storage is moved to SQL server, the most used and/or the most independent modules of the Access application can be re-written in the new application, and as significant portions of the original application is ported, effective usage, by select beta testers or by actual users can start to be switched to the new application.
Possibly, some kind of screen-scraping based logic or some other system could be used to produce an hybrid application which would provide the end users with a comprehensive application, which sometimes work from new logic, and sometimes from the original MS-Access program.

Best practice on users/roles on SQL Server for a web application

I searched online a bit and couldn't find anything that really nailed the spot or covered the bases how to go about setting up users/roles on a database.
Basically, there would be a user that would be used to access the database from the application (web application in this case) that will need access to database for the regular database operations (select, insert, update, delete) and executing stored procedures (with exec to run stored procedures within other stored procedures/UDFs).
Then, we would also have a user that would be main admin (this is simple enough).
I currently have a development environment where we don't really manage the security too well in my opinion (application uses a user with db_owner role, though it is an intranet application). Even though it is an intranet application, we still have security in mind and would like to see what are some of the ways developers set up the users/roles for this type of environment.
EDIT: Web application and SQL Server reside on separate machines.
EDIT: Forgot to mention that an ORM is used that would need direct read/write access.
Question:
What are the "best practices" on setting up the user for application access? What roles would apply and what are some of the catches?
First, I tend to encapsulate permissions in database roles rather than attach them to single user principals. The big win here is roles are part of your database, so you can completely script security then tell the deployment types to "add a user and add him to this role" and they aren't fighting SQL permission boogeymen. Furthermore, this keeps things clean enough that you can avoid developing in db_owner mode and feel alot better about yourself--as well as practice like you play and generally avoid any issues.
Insofar as applying permissions for that role, I tend to cast the net wider these days, especially if one is using ORMs and handling security through the application. In T-SQL terms, it looks like this:
GRANT SELECT, UPDATE, INSERT, DELETE, EXECUTE on SCHEMA::DBO to [My DB Role]
This might seem a bit scary at first, but it really isn't -- that role can't do anything other than manipulate data. No access to extended procs or system procs or granting user access, etc. The other big advantage is that changing the schema--like adding a table or a procedure--requires no further security work so long as you remain within that schema.
Another thing to take into consideration for SQL 2005+ is to use database schemas to secure groups of objects. Now, the big trick here is that many ORMs and migration tools don't like them, but if you render the default schema [dbo] to the app, you can use alternative schemas for special secured stuff. Eg--create an ADMIN schema for special, brutal database cleanup procedures that should be manually run by admins. Or even a separate schema for a special, highly secured part of the application that needs more granular DB permissions.
Insofar as wiring in users where you have separate boxes, even without a domain you can use Windows authentication (in Sql Server terms integrated authentication). Just make a user with the same credentials (user/pass combo) on both boxes. Setup an app domain to run as that user on the web box and setup a Sql Server user backed by that principal on the sql box and profit. That said, using the database roles can pretty much divorce you from this decision as the deployment types should be able to handle creating sql users and modifying connection strings as required.
For a long time the SQL Server guidelines for application access to the database were to isolate access to data into stored procedures, group procedures into a schema and grant execute on the schema to the principal used by the application. Ownership chaining would guarantee data access to the procedure callers. The access can be reviewed by inspecting the stored procedures. This is a simple model, easy to understand, design, deploy and manage. Use of stored procedure can leverage code signing, the most granular and powerfull access control method, and the only one that is tamper evident (signature is lost if procedure is altered).
The problem is that every bit of technology comming out from the Visual Studio designers flies in the face of this recommendation. Developers are presented with models that are just hard to use exclusively with stored procedures. Developers love to design their class models first and generate the table structure from the logical model. The procedure based guidelines reuire the procedures to exists first, before the first line of the application is written, and this is actually problematic in development due to the iterative way of modern development. This is not unsolvable, as long as the team leadership is aware of the issue and addresses it (ie. have the procedures ready, even as mocks, when the dev cycle starts).
Create a user 'webuser' that the web application uses.
Only grant stored proc execute permissions to this user. Do not allow direct table read/write. If you need to read something from a table, write a proc. If you need to write data, write another proc.
This way everything is kept nice and simple. One app user, with only the relevant permissions. If security is compromised, then all the intruder can do is run the procs.