What does dirAtten value mean in Kajiya-Kay Model? - rendering

In the hair rendering slide developed by Sheuermann at ATI at GDC 2004, I found code like this:
float StrandSpecular (float3 T, float3 V, float3 L, float exponent)
{
float3 H = normalize(L + V);
float dotTH = dot(T, H);
float sinTH = sqrt(1.0 - dotTH*dotTH);
float dirAtten = smoothstep(-1.0, 0.0, dot(T, H));
return dirAtten * pow(sinTH, exponent);
}
I truly have no idea of the value dirAtten mean, what does this exactly mean in this shading model?

I regard this dirAtten as one attenuation coeffecient and it controls the range of the lighting you can see.

Related

how to draw a helix in 3d using fragment shader (shadertoy)

I am relatily new to GLSL.
I want to create a solar system model and use it as a wallpaper (using shadertoy) (Something like this and while i have the planets moving correctly i cant figure out how to do the helix paths that follow those planets.
Here is my code so far
uniform vec2 iResolution;
uniform float iTime;
#define pi 3.141592653589
float circ(vec2 uv, vec2 pos, float rad, float blur) {
return smoothstep(blur, 0., length(-uv + pos)-rad); //draws a circle to the screen
}
float line(vec2 uv, vec3 start, vec3 end, float width) {
vec2 p = uv - start.xy;
vec2 d = end.xy - start.xy;
float l = length(d);
d = normalize(d); //direction
float t = clamp(dot(p, d), 0., l);
return (length(p - d*t)) < width ? 1 : 0.;
}
float helix(vec2 uv, vec3 start, vec3 direction, float width, float length, float angle) {
float delta = iTime / angle;
vec2 p = uv - start.xy;
vec2 d = (normalize(direction) * length).xy;
float l = length(d);
d /= l;
float t = clamp(dot(p, d), 0., l);
return (length(p - d*t)) < width ? 1 : 0.;
}
vec3 rotate(vec3 point, vec3 angle) {
mat3 rot = mat3(
cos(angle.y)*cos(angle.z), cos(angle.z)*sin(angle.x)*sin(angle.y)-cos(angle.x)*sin(angle.z), cos(angle.x)*cos(angle.z)*sin(angle.y)+sin(angle.x)*sin(angle.z),
cos(angle.y)*sin(angle.z), cos(angle.x)*cos(angle.z)+sin(angle.x)*sin(angle.y)*sin(angle.z), -cos(angle.z)*sin(angle.x)+cos(angle.x)*sin(angle.y)*sin(angle.z),
-sin(angle.y), cos(angle.y)*sin(angle.x), cos(angle.x)*cos(angle.y));
return rot * point;
}
void main() {
vec2 uv = fragCoord / iResolution.xy;
float ratio = iResolution.x / iResolution.y;
uv -= .5; //center origin
uv.x = uv.x * ratio;//make screen square
uv /= .3;//zoom
float planetA[5] = float[](0., iTime / 0.241, iTime / 0.6152, iTime, iTime / 1.8809);
vec3 planets[5] = vec3[](
vec3(0.), // sun
vec3(cos(planetA[1]) * .4, sin(planetA[1]) * .4, 0.), // mercury
vec3(cos(planetA[2]) * .7, sin(planetA[2]) * .7, 0.), // venus
vec3(cos(planetA[3]), sin(planetA[3]), 0.), // earth
vec3(cos(planetA[4])*1.5, sin(planetA[4])*1.5, 0.)// mars
);
vec3 planetsC[5] = vec3[](
vec3(0.89, 0.9, 0.45), // sun
vec3(0.54, 0.57, 0.63), // mercury
vec3(0.9, 0.5, 0.2), // venus
vec3(0.2, 0.3, 0.8), // earth
vec3(0.8, 0.3, 0.2)// mars
);
vec3 rotVec = vec3(-pi/4, pi/4, 0.);
fragColor = vec4(0.);
fragColor = mix(fragColor, vec4(1.), line(uv, vec3(0.), rotate(vec3(0., 0., 2.), rotVec), 0.01)); //sun trail
for (int i = 1; i < planets.length(); i++) {
planets[i] = rotate(planets[i], vec3(-pi/4., pi/4., 0.)); //rotate the planet
fragColor = mix(fragColor, vec4(planetsC[i], 1.), helix(uv, planets[i], rotate(vec3(0., 0., 2.), rotVec), 0.01, 2., planetA[i])); //planet trail
}
for (int i = 0; i < planets.length(); i++) { //draws the planets
fragColor = mix(fragColor, vec4(planetsC[i], 1.), circ(uv, planets[i].xy, 0.05, 0.01));
}
}
the helix function is currently only a modified version of the line method but i want it to curve around the suns trail.
Any advice and/or help would be appreciated as i am still learing.
I have tried to convert the helix equation:
x = r * cos(t) y = r * sin(t) z = t but havent gotten it to work
heres the method currently, although it only displays a straigt line:
float helix(vec2 uv, vec3 start, vec3 direction, float width, float length, float angle) {
float delta = iTime / angle;
vec2 p = uv - start.xy;
vec2 d = (normalize(direction) * length).xy;
float l = length(d);
d /= l;
float t = clamp(dot(p, d), 0., l);
return (length(p - d*t)) < width ? 1 : 0.;
}

Sphere-plane collision resolve

I want to write a c++ program that will calculate collision between sphere and plane.
The rule is that the angle of the falling object equals to angle of reflection.
What do I have for sphere:
//sphere coordinates and radius
float x;
float y;
float z;
float r;
//sphere velocity vector projections
float vx;
float vy;
float vz;
Plane is described by plane equation coefficients:
float A;
float B;
float C;
float D;
With sphere-plane collision detection I have no problem. But how to find velocity after collision?
What did I find:
So, ultimately I need to calculate updated values for vx vy vz.
#Beta’s answer on c++:
float wl = sqrt(plane->A*plane->A+plane->B*plane->B+plane->C+plane->C); // “W” vector length
float nx = plane->A/wl; //Normal components
float ny = plane->B/wl;
float nz = plane->C/wl;
float scope = (sphere->vx*nx + sphere->vy*ny + sphere->vz*nz)*2; // 2(V . n)
nx = nx*scope; // 2(V . n)n
ny = ny*scope;
nz = nz*scope;
sphere->vx -= nx; // V' = V - 2(V . n)n
sphere->vy -= ny;
sphere->vz -= nz;
The equation defining the plane is
Ax + By + Cz + D = 0
So the vector normal to the plane is
W = (A, B, C)
Normalize it:
n = W/|W|
Now take the velocity vector:
V = (vx, vy, vz)
Its component normal to the plane is
Vn = (V . n) n
and the rest of it, the part parallel to the plane is
Vp = V - Vn
We want to reverse the normal component and leave the parallel component unchanged:
V' = -Vn + Vp
which works out to
V' = V - 2(V . n)n

prepend a scalar to a vector

Say I have an existing vector x:
float x[4] = {1.0f, 2.0f, 4.0f, 8.0f};
How do a produce another vector that is exactly like x, but has the scalar 1.0 in the front position, making a 5 element vector?
Maybe something like:
float y[5];
y[0] = 1.0f;
memcpy(&y[1], x, sizeof(x));
memcpy can do it for you:
float y[5] = { 1.0f };
memcpy(y + 1, x, sizeof x);

Calculate ray direction vector from screen coordanate

I'm looking for a better way (or a note that this is the best way) to transfer a pixel coordinate to its corresponding ray direction from a arbitrary camera position/direction.
My current method is as follows. I define a "camera" as a position vector, lookat vector, and up vector, named as such. (Note that the lookat vector is a unit vector in the direction the camera is facing, NOT where (position - lookat) is the direction, as is the standard in XNA's Matrix.CreateLookAt) These three vectors can uniquely define a camera position. Here's the actual code (well, not really the actual, a simplified abstracted version) (Language is HLSL)
float xPixelCoordShifted = (xPixelCoord / screenWidth * 2 - 1) * aspectRatio;
float yPixelCoordShifted = yPixelCoord / screenHeight * 2 - 1;
float3 right = cross(lookat, up);
float3 actualUp = cross(right, lookat);
float3 rightShift = mul(right, xPixelCoordShifted);
float3 upShift = mul(actualUp, yPixelCoordShifted);
return normalize(lookat + rightShift + upShift);
(the return value is the direction of the ray)
So what I'm asking is this- What's a better way to do this, maybe using matrices, etc. The problem with this method is that if you have too wide a viewing angle, the edges of the screen get sort of "radially stretched".
You can calculate it (ray) in pixel shader, HLSL code:
float4x4 WorldViewProjMatrix; // World*View*Proj
float4x4 WorldViewProjMatrixInv; // (World*View*Proj)^(-1)
void VS( float4 vPos : POSITION,
out float4 oPos : POSITION,
out float4 pos : TEXCOORD0 )
{
oPos = mul(vPos, WorldViewProjMatrix);
pos = oPos;
}
float4 PS( float4 pos : TEXCOORD0 )
{
float4 posWS = mul(pos, WorldViewProjMatrixInv);
float3 ray = posWS.xyz / posWS.w;
return float4(0, 0, 0, 1);
}
The information about your camera's position and direction is in View matrix (Matrix.CreateLookAt).

Map GPS Coordinates to an Image and draw some GPS Points on it

I have some problems figuring out where my error is. I got the following:
Have an image and corresponding GPS coordinates of its top-left and bottom-right vertices.
E.g:
topLeft.longitude = 8.235128;
topLeft.latitude = 49.632383;
bottomRight.longitude = 8.240547;
bottomRight.latitude = 49.629808;
Now a have an Point that lies in that map:
p.longitude = 8.238567;
p.latitude = 49.630664;
I draw my image in landscape fullscreen (1024*748).
Now I want to calculate the exact Pixel position (x,y) of my point.
For doing that I am trying to use the great circle distance approach from here: Link.
CGFloat DegreesToRadians(CGFloat degrees)
{
return degrees * M_PI / 180;
};
- (float) calculateDistanceP1:(CLLocationCoordinate2D)p1 andP2:(CLLocationCoordinate2D)p2 {
double circumference = 40000.0; // Erdumfang in km am Äquator
double distance = 0.0;
double latitude1Rad = DegreesToRadians(p1.latitude);
double longitude1Rad = DegreesToRadians(p1.longitude);
double latititude2Rad = DegreesToRadians(p2.latitude);
double longitude2Rad = DegreesToRadians(p2.longitude);
double logitudeDiff = fabs(longitude1Rad - longitude2Rad);
if (logitudeDiff > M_PI)
{
logitudeDiff = 2.0 * M_PI - logitudeDiff;
}
double angleCalculation =
acos(sin(latititude2Rad) * sin(latitude1Rad) + cos(latititude2Rad) * cos(latitude1Rad) * cos(logitudeDiff));
distance = circumference * angleCalculation / (2.0 * M_PI);
NSLog(#"%f",distance);
return distance;
}
Here is my code for getting the Pixel position:
- (CGPoint) calculatePoint:(CLLocationCoordinate2D)point {
float x_coord;
float y_coord;
CLLocationCoordinate2D x1;
CLLocationCoordinate2D x2;
x1.longitude = p.longitude;
x1.latitude = topLeft.latitude;
x2.longitude = p.longitude;
x2.latitude = bottomRight.latitude;
CLLocationCoordinate2D y1;
CLLocationCoordinate2D y2;
y1.longitude = topLeft.longitude;
y1.latitude = p.latitude;
y2.longitude = bottomRight.longitude;
y2.latitude = p.latitude;
float distanceX = [self calculateDistanceP1:x1 andP2:x2];
float distanceY = [self calculateDistanceP1:y1 andP2:y2];
float distancePX = [self calculateDistanceP1:x1 andP2:p];
float distancePY = [self calculateDistanceP1:y1 andP2:p];
x_coord = fabs(distancePX * (1024 / distanceX))-1;
y_coord = fabs(distancePY * (748 / distanceY))-1;
return CGPointMake(x_coord,y_coord);
}
x1 and x2 are the points on the longitude of p and with latitude of topLeft and bottomRight.
y1 and y2 are the points on the latitude of p and with longitude of topLeft and bottomRight.
So I got the distance between left and right on longitude of p and distance between top and bottom on latitude of p. (Needed for calculate the pixel position)
Now I calculate the distance between x1 and p (my distance between x_0 and x_p) after that I calculate the distance between y1 and p (distance between y_0 and y_p)
Last but not least the Pixel position is calculated and returned.
The Result is, that my point is on the red and NOT on the blue position:
Maybe you find any mistakes or have any suggestions for improving the accuracy.
Maybe I didn't understand your question, but shouldn't you be using the Converting Map Coordinates methods of MKMapView?
See this image
I used your co-ordinates, and simply did the following:
x_coord = 1024 * (p.longitude - topLeft.longitude)/(bottomRight.longitude - topLeft.longitude);
y_coord = 748 - (748 * (p.latitude - bottomRight.latitude)/(topLeft.latitude - bottomRight.latitude));
The red dot markes this point. For such small distances you don't really need to use great circles, and your rounding errors will be making things much more inaccurate