Distributed Z3 and best hardware for each node - hardware

I'm thinking on starting a cluster of servers which will be running exclusively Z3 to solve SMT formulas.
Is there any way to clusterize several servers to join computational power and solve SMT formulas in a distributed fashion?
What are the recommendation characteristics of an system that will be running Z3 to be as fast as possible (regarding to hardware)?
Thank you!!

SAT/SMT solvers are usually very heavy on memory due to low cache hits. Therefore you can't run many processes on a CPU, otherwise they soon start degrading the performance of each other (i.e., running one process per core is not a good idea if you want to benchmark).
I can't give any specific recomendation, but I would choose CPUs that have fewer cores (say 4) and high memory bandwidth. These days CPUs have a fixed TDP and the fewer the CPUs the more powerful each one is -- and less contention for the memory.
Also you want to stick with little-endian architectures. At the moment, Z3 doesn't play well with big-endian archs (such as many ARMs, MIPS, SPARCs, etc). Moreover, for what I've seen, 64 bits usually helps.

Related

How to allocate more CPU and RAM to SUMO (Simulation of Urban Mobility)

I have downloaded and unzipped sumo-win64-0.32.0 and running sumo.exe this on a powerful machine (64GB ram, Xeon CPU E5-1650 v4 3.6GHz) for about 140k trips, 108k edges, and 25k vehicles types which are departed in the first 30 min of simulation. I have noticed that my CPU is utilized only 30% and Memory only 38%, Is there any way to increase the speed by forcing sumo to use more CPU and ram, or possibly run in parallel? From "Can SUMO be run in parallel (on multiple cores or computers)?
The simulation itself always runs on a single core."
it appears that parallel processing is not possible t, but what about dedicating more CPU and ram?
Windows usually shows the CPU utilization such that 100% means all cores are used, so 30% is probably already more than one core and there is no way of increasing that with a single threaded application as sumo. Also if your scenario fits within RAM completely there is no point of increasing that. You might want to try one of the several parallelization approaches SUMO has but none of them got further than some toy examples (and none is in the official distribution) and the speed improvements are sometimes only marginal. Probably the best you can do is to do some profiling and find the performance bottlenecks and/or send your results to the developers.

Slow Parallel programming - MPI, VB.NET and FORTRAN

I'm working on parallelizing a software which simulates transport and flow process in the unsaturated soil zone. The software consists of a VB.NET user interface, and a FORTRAN DLL kernel to do the calculations.
I parallelized the software by using the package MPI.NET in the VB.NET part. When the program is started with a number of processes, all of them but the master process go into a wait function, while the master process takes care of the interaction of the software with the user. When all the data required for the simulation is entered, the master process enters the FORTRAN DLL, and calls the other processes. These jump to the starting point of the function in the DLL, and together all the processes solve a linear system of equations for about 10-20 times (the original partial differential equation is nonlinear, therefore these iterations in order to gain accuracy in the solution). When the solution is computed, all the processes go back to VB.NET, This is done for all the timesteps of the simulation. When all steps are computed, the master process continues with the user interaction, while the other processes go back
into the wait function, until they are called again by the master process.
The thing is that this program runs much slower than the original, sequential version of it. Now there might be a number of reasons for this. I used the PETSc library in the FORTRAN DLL to solve the system of equations, and I think I have configured it quite well. My question is if at some point in the architecture I described there could be a point or two which could cause a significant slowdown if not handled correctly. I'm not sure f.e. if the subsequent calls of DLL function can cost a lot of time.
My system is a Intel Xeon 3470 processor with 8GB RAM. The systems I tried to solve had up to 120.000 unknowns, which I know is at the very lower bound of what should be calculated in parallel, but at least with the 120.000 matrix I would have expected a better performance than I did measure.
Thanks in advance for your thoughts,
Martin
I would say that 120,000 degrees of freedom and 10-20 iterations is not that large a problem. Million degree of freedom problems were done when I did finite element analysis for a living, and that was 16 years ago.
Is it possible to solve it using an in-memory solver, without parallelization, with 8GB of RAM? That would certainly be your benchmark. Is that what you're comparing your parallel results to?
Are the parallel processes running on different processors or different machines? Parallelization doesn't buy you anything if everything is done on a single processor. You have to context switch and time slice processes, and there's overhead associated with MPI to communicate between processes. I would expect a parallel solution on a single processor to run more slowly than a single thread, in-memory solution.
If you have multiple processes, then I'd say it's a matter of tuning. I'd plot performance versus number of parallel processes. If there's a speedup, you should find that it improves with more processes until you reach a saturation point, beyond which the overhead is greater than the benefit.
If you have multiple cores, when you run your program sequentially can you see that only one or a few processor are utilized?
If the load in the sequential case is high and evenly distributed over all cores then IMHO there is no need to parallelize your program.
My system has a Xeon 3470, which is a quadcore processor. So the computations are all done on these 4 on 1 machine. I don't run the program with more than 4 processes of course.The old solver that the software had was sequential of course, and that still runs faster than the parallel version. When I plot number of processes against runtime, I see that runtime even increases a little bit with smaller models - but that is to be expected because of the communication overhead.
In both the sequential and the parallel case all 4 processors are utilized, and the load balance between them is acceptable.
Like I said, I know that the models I've tested so far are not ideal to talk about parallel performance. I was just wondering if besides the communication overhead due to MPI there could still be another point that could lead to the slowdown of the program.

Which kinds of low level facilities aren't typically supported on multi-core machines?

I'm looking at some optimized, low level, cross platform, concurrency code designed to run on multi-core machines, and want to check some of its assumptions.
Support for hardware optimizations of some kinds aren't, probably, supported on multi core designs (for example, Out of Order Execution support [wikipedia] seems like a good candidate - it takes a lot of surface area to implement, and can be a power hog). Does anyone have a list of other such facilities - ones typically available on single or small number of core machines, but typically left out from machines with larger number of cores on them?
Today, multicore machines are warmed-over die shrinks of uniprocessors. You could almost imagine sawing a 4-core die into 4 1-core dice. I exaggerate only a little bit.
In future, multicore machines will be more thoughtfully designed for energy efficiency and area efficiency. You may see the same ISA, but with different mixes of resources (more or fewer numbers of duplicated functional units), and even with some sharing of resources between cores (e.g. AMD Bulldozer). And, as you say, backing off from the complexity and energy overhead of no-holds-barred out-of-order execution. This will most likely be perceived as different instruction-per-clock (IPC) differences (more or less performance) on the same instruction set architecture.
Also as vendors have to juggle a hypothetical portfolio of big out-of-order serial performance optimized cores and small in-order or less-out-of-order (OoO) and narrower, more energy efficient "throughput" cores, they will be challenged to keep these different implementations in sync with the evolutions of their ISAs. Some cores may support new instructions, new state, new coprocessors, virtualization, security, etc. earlier than others. This leads to a challenge of coding to the common denominator while also lighting up the new facilities for better perf or energy efficiency (or whatever) on those cores that have the new capabilities.
So to answer your specific question, all the traditional computer architecture techniques for trading gates for expressive-power, or performance, or energy efficiency may be rethought and selectively removed in future small throughput-oriented cores.
Hardware multithreading
Aggressive OoO -> humble OoO or even in-order execution
High degrees of microarchitectural speculation
Fancy branch predictors
Big TLBs
Fancy memory prefetchers
Deep pipelines
Wide issue / many copies of functional units
Big caches, wide buses to caches
...
But it goes both ways. It may also be that the new small throughput-optimized energy-optimized cores have new features not present in the older OoO cores. For example, the Larrabee New Instructions (LRBni) (http://www.drdobbs.com/high-performance-computing/216402188) were proposed for a machine with dozens of simpler cores. As another example, the small cores may turn to hardware multithreading to afford better memory latency tolerance to compensate for smaller private caches.
Also, having lots of small energy frugal cores means you may be willing to dedicate and therefore customize some of the cores to optimize performance for particular valuable workloads. For example, the Tensilica custom processors and tools anticipate that some of your small cores will have additional instructions and custom problem-specific datapaths (accelerating an inner loop of video decoding, for example). So in these cases the little core may (counter-intuitively) have much better performance than the much larger core.
Makes sense?
Happy hacking!

Meaning of bandwidth in CUDA and why it is important

The CUDA programming guide states that
"Bandwidth is one of the most important gating factors for performance. Almost all changes to code should be made in the context of how they affect bandwidth."
It goes on to calculate theoretical bandwidth which is in the order of hundreds of gigabytes per second. I am at a loss as to why how many bytes one can read/write to global memory is a reflection of how well optimised a kernel is.
If I have a kernel which does intensive computation on data stored in shared memory and/or registers, with only a single read at the start and write out at the end from and to global memory, surely the effective bandwidth will be small, while the kernel itself may be very efficient.
Could any one further explain bandwidth in this context?
Thanks
most all nontrivial computational kernels, in CPU and GPU land, memory bound.
GPU has very high computational intensity and throughput, but access to main memory is very slow and has high latency, few hundred cycles per read/store versus four cycles for mmany arithmetic operations.
It sounds like your kernel is computation bound, so your luck. However you still have to watch out for shared memory bank conflict, which can serialize portions of code unexpectedly.
Most kernels are memory bound so maximising memory throughput is critical. If you're lucky enough to have a compute bound kernel then optimizing for computation is generally easier. You do need to look out for divergence and you should still ensure you have enough threads to hide memory latency.
Check out the Advanced CUDA C presentation for more information, including some tips for how to compare your realised performance with theoretical performance. The CUDA Best Practices Gude also has some good information, it's available as part of the CUDA toolkit (download from the NVIDIA site).
Typically kernels are fairly small and simple and perform the same operation on a lot of data. You might have a bunch of kernels that you invoke in sequence to perform some more complex operation (think of it as a processing pipeline). Obviously the throughput of your pipeline will depend both on how efficient your kernels are and whether you are limited by memory bandwidth in any way.

Hadoop cluster. 2 Fast, 4 Medium, 8 slower machines?

We're going to purchase some new hardware to use just for a Hadoop cluster and we're stuck on what we should purchase. Say we have a budget of $5k should we buy two super nice machines at $2500/each, four at around $1200/each or eight at around $600 each? Will hadoop work better with more slower machines or fewest much faster machines? Or, as like most things "it depends"? :-)
You're generally better off with Hadoop getting a few extra machines that are less beefy. You almost never see datanodes with more than 16GB ram and dual quad-core CPUs, and often they are smaller than that.
You always have to run one as the namenode (master), and generally you don't also run a datanode (worker/slave) on the same box, although you could since your cluster is small. Assuming you don't, though, getting 2 machines will leave you only 1 worker node, which somewhat defeats the purpose. (Not entirely, because you can still run 4-8 jobs in parallel on the slave, but still.)
At the same time, you don't want to have a cluster of 1000 486s. If your budget is $5k, I would strike a balance and do 4 $1200 machines. Those will provide a decent baseline in terms of individual performance, you'll have 3 datanodes to distribute work to, and you'll have room to grow your cluster if you need.
Things to keep in mind: you'll want to run multiple map or reduce tasks per datanode, and that means multiple JVMs running simultaneously. I would try to get at least 4GB, and preferably 8GB ram. CPU is less important as most MR jobs are IO bound. You could likely get a machine like this for your $1200 price target, so that's my vote.
In a nutshell, you want to max out the number of processor cores and disks. You can sacrifice reliability and quality, but don't get the cheapest hardware out there, as you will have too many reliability problems.
We went with Dell 2xCPU 4-core dell servers, so 8 cores per box. 16GB of memory per box, which is 2GB per core, a bit low as you need memory both for your tasks and for disk buffering. 5x500GB hard drives, and I wish we'd gone for terabyte or higher drives instead.
For drives, my opinion is to buy more cheap, slow, unreliable, high-capacity drives as opposed to more expensive, faster, smaller, reliable drives. If you're having problems with disk throughput, more memory will help with buffering.
This is probably a beefier configuration than you're looking at, but maxing out cores and drives versus buying more boxes is generally a good choice - less power costs, easier to administer, and faster for some operations.
More drives means more simultaneous disk throughput per core, so having as many drives as cores is a good thing. Benchmarking seems to indicate that RAID configurations are slower than JBOD configuration (just mounting the drives and having Hadoop spread load across them) and JBOD is also more reliable.
LAST! Be sure to get ECC memory. Hadoop pushes terabytes of data through memory, and some users have found that non-ECC memory configurations can occasionally introduce single bit errors in terabyte-sized datasets. Debugging these errors is a nightmare.
I recommend having a look at this presentation: http://www.cloudera.com/hadoop-training-thinking-at-scale
Here the various pro's and con's are described.
I think the answer also depends on Your expectations of the cluster grow and networking technology You are using. If you are ok with 1GB ethernet - then type of machines is less significant. In the same time - if you want 10GBit ethernet - you should opt to smaller number of better machines to reduce the cost of networking.
another reference : http://hadoopilluminated.com/hadoop_book/Hardware_Software.html
(disclaimer : I am a co-author of this free hadoop book)