Unique constraint vs. unique index? - sql

Is there a difference between:
CREATE TABLE p(
product_no integer,
name text UNIQUE,
price numeric
);
and:
CREATE TABLE p(
product_no integer,
name text,
price numeric
);
CREATE UNIQUE INDEX customername
ON p
USING btree
(name COLLATE pg_catalog."default");
Will name be unique in both cases? What does it means when an index is unique?
EDIT: Postgres unique constraint vs index isn't answering my question. It considers a case with FK. My question has nothing to do with FK's. I just want to know if these two operations are equivalent in this example where no FK is involved.

Yes, there's a small difference. If you define a unique constraint it's visible in catalogs like information_schema. This is not true of a unique index.
Also, you can create things like partial unique indexes, but you cannot do that on a constraint.
Finally, unique constraints are SQL-standard.
A unique constraint implies the creation of a unique index, but not vice versa.
Use a unique constraint unless you have a good reason to create the unique index directly.

From documentation
Adding a unique constraint will automatically create a unique btree
index on the column or group of columns used in the constraint
So for your simplified example they are equivalent

Related

What is the best way to create index and unique constraint?

What is the best way to create an index as well as unique constraint on a schema like below?
Most of my queries will filter based on date column. If I create single column index on date and a unique constraint including both (date and key), I end up creating two indices as unique constraint also creates an index.
Is there a better way around this?
date
key
value
12-12-2021
a
3
12-12-2021
b
4
12-13-2021
a
3
12-13-2021
b
4
It depends.
Most of my queries will filter based on date column.
That's not enough information. For equality filters, a PRIMARY KEY on (date, key) (with date as leading column!) will typically do just fine:
CREATE TABLE tbl (
date date
, key text
, value int
, PRIMARY KEY (date, key)
);
Because ... see:
Is a composite index also good for queries on the first field?
PostgreSQL composite primary key
Why can I create a table with PRIMARY KEY on a nullable column?
How does PostgreSQL enforce the UNIQUE constraint / what type of index does it use?
This also covers range filters on date, but it's less than ideal when combined with an equality filter on key, because ... see:
Multicolumn index and performance
If your table is as simple as your example suggests and you typically include value in the SELECT list, consider a covering index (requires Postgres 11 or later) to get index-only scans:
...
, PRIMARY KEY (date, key) INCLUDE (value)
See:
Does a query with a primary key and foreign keys run faster than a query with just primary keys?

How to create a constraint on only part of a composite key for a bit field?

Let's say I have a table with a composite key of [PersonId] and [LanguageId], and a third column of [IsPrimary]. A person can speak more than one language, but they can only have exactly one primary language (yay business requirements!).
How do I create a constraint that allows for [IsPrimary] to be true only once for each unique [PersonId]?
You can create a filtered unique index:
create unique index unq_t_personid_languageid on t(personid)
where isprimary = 1;

Why should we avoid CREATE UNIQUE INDEX? [duplicate]

As I can understand documentation the following definitions are equivalent:
create table foo (
id serial primary key,
code integer,
label text,
constraint foo_uq unique (code, label));
create table foo (
id serial primary key,
code integer,
label text);
create unique index foo_idx on foo using btree (code, label);
However, a note in the manual for Postgres 9.4 says:
The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD CONSTRAINT. The use of indexes to enforce unique constraints
could be considered an implementation detail that should not be
accessed directly.
(Edit: this note was removed from the manual with Postgres 9.5.)
Is it only a matter of good style? What are practical consequences of choice one of these variants (e.g. in performance)?
I had some doubts about this basic but important issue, so I decided to learn by example.
Let's create test table master with two columns, con_id with unique constraint and ind_id indexed by unique index.
create table master (
con_id integer unique,
ind_id integer
);
create unique index master_unique_idx on master (ind_id);
Table "public.master"
Column | Type | Modifiers
--------+---------+-----------
con_id | integer |
ind_id | integer |
Indexes:
"master_con_id_key" UNIQUE CONSTRAINT, btree (con_id)
"master_unique_idx" UNIQUE, btree (ind_id)
In table description (\d in psql) you can tell unique constraint from unique index.
Uniqueness
Let's check uniqueness, just in case.
test=# insert into master values (0, 0);
INSERT 0 1
test=# insert into master values (0, 1);
ERROR: duplicate key value violates unique constraint "master_con_id_key"
DETAIL: Key (con_id)=(0) already exists.
test=# insert into master values (1, 0);
ERROR: duplicate key value violates unique constraint "master_unique_idx"
DETAIL: Key (ind_id)=(0) already exists.
test=#
It works as expected!
Foreign keys
Now we'll define detail table with two foreign keys referencing to our two columns in master.
create table detail (
con_id integer,
ind_id integer,
constraint detail_fk1 foreign key (con_id) references master(con_id),
constraint detail_fk2 foreign key (ind_id) references master(ind_id)
);
Table "public.detail"
Column | Type | Modifiers
--------+---------+-----------
con_id | integer |
ind_id | integer |
Foreign-key constraints:
"detail_fk1" FOREIGN KEY (con_id) REFERENCES master(con_id)
"detail_fk2" FOREIGN KEY (ind_id) REFERENCES master(ind_id)
Well, no errors. Let's make sure it works.
test=# insert into detail values (0, 0);
INSERT 0 1
test=# insert into detail values (1, 0);
ERROR: insert or update on table "detail" violates foreign key constraint "detail_fk1"
DETAIL: Key (con_id)=(1) is not present in table "master".
test=# insert into detail values (0, 1);
ERROR: insert or update on table "detail" violates foreign key constraint "detail_fk2"
DETAIL: Key (ind_id)=(1) is not present in table "master".
test=#
Both columns can be referenced in foreign keys.
Constraint using index
You can add table constraint using existing unique index.
alter table master add constraint master_ind_id_key unique using index master_unique_idx;
Table "public.master"
Column | Type | Modifiers
--------+---------+-----------
con_id | integer |
ind_id | integer |
Indexes:
"master_con_id_key" UNIQUE CONSTRAINT, btree (con_id)
"master_ind_id_key" UNIQUE CONSTRAINT, btree (ind_id)
Referenced by:
TABLE "detail" CONSTRAINT "detail_fk1" FOREIGN KEY (con_id) REFERENCES master(con_id)
TABLE "detail" CONSTRAINT "detail_fk2" FOREIGN KEY (ind_id) REFERENCES master(ind_id)
Now there is no difference between column constraints description.
Partial indexes
In table constraint declaration you cannot create partial indexes.
It comes directly from the definition of create table ....
In unique index declaration you can set WHERE clause to create partial index.
You can also create index on expression (not only on column) and define some other parameters (collation, sort order, NULLs placement).
You cannot add table constraint using partial index.
alter table master add column part_id integer;
create unique index master_partial_idx on master (part_id) where part_id is not null;
alter table master add constraint master_part_id_key unique using index master_partial_idx;
ERROR: "master_partial_idx" is a partial index
LINE 1: alter table master add constraint master_part_id_key unique ...
^
DETAIL: Cannot create a primary key or unique constraint using such an index.
One more advantage of using UNIQUE INDEX vs. UNIQUE CONSTRAINT is that you can easily DROP/CREATE an index CONCURRENTLY, whereas with a constraint you can't.
Uniqueness is a constraint. It happens to be implemented via the creation
of a unique index since an index is quickly able to search all existing
values in order to determine if a given value already exists.
Conceptually the index is an implementation detail and uniqueness should be
associated only with constraints.
The full text
So speed performance should be same
Since various people have provided advantages of unique indexes over unique constraints, here's a drawback: a unique constraint can be deferred (only checked at the end of the transaction), a unique index can not be.
A very minor thing that can be done with constraints only and not with indexes is using the ON CONFLICT ON CONSTRAINT clause (see also this question).
This doesn't work:
CREATE TABLE T (a INT PRIMARY KEY, b INT, c INT);
CREATE UNIQUE INDEX u ON t(b);
INSERT INTO T (a, b, c)
VALUES (1, 2, 3)
ON CONFLICT ON CONSTRAINT u
DO UPDATE SET c = 4
RETURNING *;
It produces:
[42704]: ERROR: constraint "u" for table "t" does not exist
Turn the index into a constraint:
DROP INDEX u;
ALTER TABLE t ADD CONSTRAINT u UNIQUE (b);
And the INSERT statement now works.
Another thing I've encountered is that you can use sql expressions in unique indexes but not in constraints.
So, this does not work:
CREATE TABLE users (
name text,
UNIQUE (lower(name))
);
but following works.
CREATE TABLE users (
name text
);
CREATE UNIQUE INDEX uq_name on users (lower(name));
There is a difference in locking.
Adding an index does not block read access to the table.
Adding a constraint does put a table lock (so all selects are blocked) since it is added via ALTER TABLE.
I read this in the doc:
ADD table_constraint [ NOT VALID ]
This form adds a new constraint to a table using the same syntax as CREATE TABLE, plus the option NOT VALID, which is currently only allowed for foreign key constraints. If the constraint is marked NOT VALID, the potentially-lengthy initial check to verify that all rows in the table satisfy the constraint is skipped. The constraint will still be enforced against subsequent inserts or updates (that is, they'll fail unless there is a matching row in the referenced table). But the database will not assume that the constraint holds for all rows in the table, until it is validated by using the VALIDATE CONSTRAINT option.
So I think it is what you call "partial uniqueness" by adding a constraint.
And, about how to ensure the uniqueness:
Adding a unique constraint will automatically create a unique B-tree index on the column or group of columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.
Note: The preferred way to add a unique constraint to a table is ALTER TABLE … ADD CONSTRAINT. The use of indexes to enforce unique constraints could be considered an implementation detail that should not be accessed directly. One should, however, be aware that there’s no need to manually create indexes on unique columns; doing so would just duplicate the automatically-created index.
So we should add constraint, which creates an index, to ensure uniqueness.
How I see this problem?
A "constraint" aims to gramatically ensure that this column should be unique, it establishes a law, a rule; while "index" is semantical, about "how to implement, how to achieve the uniqueness, what does unique means when it comes to implementation". So, the way Postgresql implements it, is very logical: first, you declare that a column should be unique, then, Postgresql adds the implementation of adding an unique index for you.
SELECT a.phone_number,count(*) FROM public.users a
Group BY phone_number Having count(*)>1;
SELECT a.phone_number,count(*) FROM public.retailers a
Group BY phone_number Having count(*)>1;
select a.phone_number from users a inner join users b
on a.id <> b.id and a.phone_number = b.phone_number order by a.id;
select a.phone_number from retailers a inner join retailers b
on a.id <> b.id and a.phone_number = b.phone_number order by a.id
DELETE FROM
users a
USING users b
WHERE
a.id > b.id
AND a.phone_number = b.phone_number;
DELETE FROM
retailers a
USING retailers b
WHERE
a.id > b.id
AND a.phone_number = b.phone_number;
CREATE UNIQUE INDEX CONCURRENTLY users_phone_number
ON users (phone_number);
To Verify:
insert into users(name,phone_number,created_at,updated_at) select name,phone_number,created_at,updated_at from users

Postgres unique constraint vs index

As I can understand documentation the following definitions are equivalent:
create table foo (
id serial primary key,
code integer,
label text,
constraint foo_uq unique (code, label));
create table foo (
id serial primary key,
code integer,
label text);
create unique index foo_idx on foo using btree (code, label);
However, a note in the manual for Postgres 9.4 says:
The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD CONSTRAINT. The use of indexes to enforce unique constraints
could be considered an implementation detail that should not be
accessed directly.
(Edit: this note was removed from the manual with Postgres 9.5.)
Is it only a matter of good style? What are practical consequences of choice one of these variants (e.g. in performance)?
I had some doubts about this basic but important issue, so I decided to learn by example.
Let's create test table master with two columns, con_id with unique constraint and ind_id indexed by unique index.
create table master (
con_id integer unique,
ind_id integer
);
create unique index master_unique_idx on master (ind_id);
Table "public.master"
Column | Type | Modifiers
--------+---------+-----------
con_id | integer |
ind_id | integer |
Indexes:
"master_con_id_key" UNIQUE CONSTRAINT, btree (con_id)
"master_unique_idx" UNIQUE, btree (ind_id)
In table description (\d in psql) you can tell unique constraint from unique index.
Uniqueness
Let's check uniqueness, just in case.
test=# insert into master values (0, 0);
INSERT 0 1
test=# insert into master values (0, 1);
ERROR: duplicate key value violates unique constraint "master_con_id_key"
DETAIL: Key (con_id)=(0) already exists.
test=# insert into master values (1, 0);
ERROR: duplicate key value violates unique constraint "master_unique_idx"
DETAIL: Key (ind_id)=(0) already exists.
test=#
It works as expected!
Foreign keys
Now we'll define detail table with two foreign keys referencing to our two columns in master.
create table detail (
con_id integer,
ind_id integer,
constraint detail_fk1 foreign key (con_id) references master(con_id),
constraint detail_fk2 foreign key (ind_id) references master(ind_id)
);
Table "public.detail"
Column | Type | Modifiers
--------+---------+-----------
con_id | integer |
ind_id | integer |
Foreign-key constraints:
"detail_fk1" FOREIGN KEY (con_id) REFERENCES master(con_id)
"detail_fk2" FOREIGN KEY (ind_id) REFERENCES master(ind_id)
Well, no errors. Let's make sure it works.
test=# insert into detail values (0, 0);
INSERT 0 1
test=# insert into detail values (1, 0);
ERROR: insert or update on table "detail" violates foreign key constraint "detail_fk1"
DETAIL: Key (con_id)=(1) is not present in table "master".
test=# insert into detail values (0, 1);
ERROR: insert or update on table "detail" violates foreign key constraint "detail_fk2"
DETAIL: Key (ind_id)=(1) is not present in table "master".
test=#
Both columns can be referenced in foreign keys.
Constraint using index
You can add table constraint using existing unique index.
alter table master add constraint master_ind_id_key unique using index master_unique_idx;
Table "public.master"
Column | Type | Modifiers
--------+---------+-----------
con_id | integer |
ind_id | integer |
Indexes:
"master_con_id_key" UNIQUE CONSTRAINT, btree (con_id)
"master_ind_id_key" UNIQUE CONSTRAINT, btree (ind_id)
Referenced by:
TABLE "detail" CONSTRAINT "detail_fk1" FOREIGN KEY (con_id) REFERENCES master(con_id)
TABLE "detail" CONSTRAINT "detail_fk2" FOREIGN KEY (ind_id) REFERENCES master(ind_id)
Now there is no difference between column constraints description.
Partial indexes
In table constraint declaration you cannot create partial indexes.
It comes directly from the definition of create table ....
In unique index declaration you can set WHERE clause to create partial index.
You can also create index on expression (not only on column) and define some other parameters (collation, sort order, NULLs placement).
You cannot add table constraint using partial index.
alter table master add column part_id integer;
create unique index master_partial_idx on master (part_id) where part_id is not null;
alter table master add constraint master_part_id_key unique using index master_partial_idx;
ERROR: "master_partial_idx" is a partial index
LINE 1: alter table master add constraint master_part_id_key unique ...
^
DETAIL: Cannot create a primary key or unique constraint using such an index.
One more advantage of using UNIQUE INDEX vs. UNIQUE CONSTRAINT is that you can easily DROP/CREATE an index CONCURRENTLY, whereas with a constraint you can't.
Uniqueness is a constraint. It happens to be implemented via the creation
of a unique index since an index is quickly able to search all existing
values in order to determine if a given value already exists.
Conceptually the index is an implementation detail and uniqueness should be
associated only with constraints.
The full text
So speed performance should be same
Since various people have provided advantages of unique indexes over unique constraints, here's a drawback: a unique constraint can be deferred (only checked at the end of the transaction), a unique index can not be.
A very minor thing that can be done with constraints only and not with indexes is using the ON CONFLICT ON CONSTRAINT clause (see also this question).
This doesn't work:
CREATE TABLE T (a INT PRIMARY KEY, b INT, c INT);
CREATE UNIQUE INDEX u ON t(b);
INSERT INTO T (a, b, c)
VALUES (1, 2, 3)
ON CONFLICT ON CONSTRAINT u
DO UPDATE SET c = 4
RETURNING *;
It produces:
[42704]: ERROR: constraint "u" for table "t" does not exist
Turn the index into a constraint:
DROP INDEX u;
ALTER TABLE t ADD CONSTRAINT u UNIQUE (b);
And the INSERT statement now works.
Another thing I've encountered is that you can use sql expressions in unique indexes but not in constraints.
So, this does not work:
CREATE TABLE users (
name text,
UNIQUE (lower(name))
);
but following works.
CREATE TABLE users (
name text
);
CREATE UNIQUE INDEX uq_name on users (lower(name));
There is a difference in locking.
Adding an index does not block read access to the table.
Adding a constraint does put a table lock (so all selects are blocked) since it is added via ALTER TABLE.
I read this in the doc:
ADD table_constraint [ NOT VALID ]
This form adds a new constraint to a table using the same syntax as CREATE TABLE, plus the option NOT VALID, which is currently only allowed for foreign key constraints. If the constraint is marked NOT VALID, the potentially-lengthy initial check to verify that all rows in the table satisfy the constraint is skipped. The constraint will still be enforced against subsequent inserts or updates (that is, they'll fail unless there is a matching row in the referenced table). But the database will not assume that the constraint holds for all rows in the table, until it is validated by using the VALIDATE CONSTRAINT option.
So I think it is what you call "partial uniqueness" by adding a constraint.
And, about how to ensure the uniqueness:
Adding a unique constraint will automatically create a unique B-tree index on the column or group of columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.
Note: The preferred way to add a unique constraint to a table is ALTER TABLE … ADD CONSTRAINT. The use of indexes to enforce unique constraints could be considered an implementation detail that should not be accessed directly. One should, however, be aware that there’s no need to manually create indexes on unique columns; doing so would just duplicate the automatically-created index.
So we should add constraint, which creates an index, to ensure uniqueness.
How I see this problem?
A "constraint" aims to gramatically ensure that this column should be unique, it establishes a law, a rule; while "index" is semantical, about "how to implement, how to achieve the uniqueness, what does unique means when it comes to implementation". So, the way Postgresql implements it, is very logical: first, you declare that a column should be unique, then, Postgresql adds the implementation of adding an unique index for you.
SELECT a.phone_number,count(*) FROM public.users a
Group BY phone_number Having count(*)>1;
SELECT a.phone_number,count(*) FROM public.retailers a
Group BY phone_number Having count(*)>1;
select a.phone_number from users a inner join users b
on a.id <> b.id and a.phone_number = b.phone_number order by a.id;
select a.phone_number from retailers a inner join retailers b
on a.id <> b.id and a.phone_number = b.phone_number order by a.id
DELETE FROM
users a
USING users b
WHERE
a.id > b.id
AND a.phone_number = b.phone_number;
DELETE FROM
retailers a
USING retailers b
WHERE
a.id > b.id
AND a.phone_number = b.phone_number;
CREATE UNIQUE INDEX CONCURRENTLY users_phone_number
ON users (phone_number);
To Verify:
insert into users(name,phone_number,created_at,updated_at) select name,phone_number,created_at,updated_at from users

Oracle Unique Indexes

I was creating a new table today in 10g when I noticed an interesting behavior. Here is an example of what I did:
CREATE TABLE test_table ( field_1 INTEGER PRIMARY KEY );
Oracle will by default, create a non-null unique index for the primary key. I double checked this. After a quick check, I find a unique index name SYS_C0065645. Everything is working as expected so far. Now I did this:
CREATE TABLE test_table ( field_1 INTEGER,
CONSTRAINT pk_test_table PRIMARY KEY (field_1) USING INDEX (CREATE INDEX idx_test_table_00 ON test_table (field_1)));
After describing my newly created index idx_test_table_00, I see that it is non-unique. I tried to insert duplicate data into the table and was stopped by the primary key constraint, proving that the functionality has not been affected. It seems strange to me that Oracle would allow a non-unique index to be used for a primary key constraint. Why is this allowed?
There is actually no structural difference between a unique index and a non-unique index, Oracle can use either for the PK constraint. One advantage of allowing a PK definition like this is that you can disable or defer the constraint for data loading - this isn't possible with a unique index, so one could argue that this implementation is more flexible.
Why not allow it? I love that Oracle gives you lots of options and flexibility.
Maybe you can create one index and use it for two purposes:
validate the PK
help a query perform better
Oracle will by default create a non-null unique index
Oh, and the index has nothing to do with the not null aspect.
see this excellent article about non-unique indexes policing primary keys by Richard Foote. Richard shows that you will take a performance hit when using a non-unique index.
In other words: don't use non-unique indexes to police a primary key constraint unless you really need the constraint to be deferrable.