Reconstruct Create-Table-statement from Select-Statements - sql

Question
Are there any tools or APIs that can do the following conversion/transformation?
Input: A Select-statement of arbitrary complexity (e.g can contain multiple joins, unions etc. pp.) for example SELECT x, y, z FROM A LEFT JOIN B on A.p = B.p LEFT JOIN C on B.q = C.q
Output: A Create-statement that creates all neccessary tables.
Background:
I have 50+ Select-statements for which I need to generate tables. This is a somehow tedious task.
Additional Questions
I think it is possible to automate. Correct me if I am wrong with this assumption and provide a explanation in case it is not possible to automate. I know the Select-statements can lack information, that the real database would have.

The trouble with this is that you do not have the relevant information in order to create the tables. You would have to make a lot of assumptions
You are missing the following info:
Datatypes CHAR(10), INT, BIT
Constraints NOT NULL, DEFAULT()
Index information
...and that is just the start, not every query will list all fields and you'll probably find that you've missed stuff the next time a table is referenced - what do you do then??
The only way this could be done is if you have very script coding standards in place.
For example:
All columns called Modified are of type DATETIME NOT NULL
All primary keys take the name of the table plus ID, eg. TablenameID INT IDENTITY(1,1) PRIMARY KEY NOT NULL (you can use also use the CONSTRAINT option to create the key with a specific name)
... you get the idea.
I would just bite the bullet and get on with it manually.
Edit
The real question here is why are you doing it this way? Surely the queries have been created against an existing database?
Is it the case that you are migrating from one RDBMS to another?

Related

Multiple record types and how to split them amongst tables

I'm working on a database structure and trying to imagine the best way to split up a host of related records into tables. Records all have the same base type they inherit from, but each then expands on it for their particular use.
These 4 properties are present for every type.
id, name, groupid, userid
Here are the types that expand off those 4 properties.
"Static": value
"Increment": currentValue, maxValue, overMaxAllowed, underNegativeAllowed
"Target": targetValue, result, lastResult
What I tried initially was to create a "records" table with the 4 base properties in it. I then created 3 other tables named "records_static/increment/target", each with their specific properties as columns. I then forged relationships between a "rowID" column in each of these secondary tables with the main table's "id".
Populating the tables with dummy data, I am now having some major problems attempting to extract the data with a query. The only parameter is the userid, beyond that what I need is a table with all of the columns and data associated with the userid.
I am unsure if I should abandon that table design, or if I just am going about the query incorrectly.
I hope I explained that well enough, please let me know if you need additional detail.
Make the design as simple as possible.
First I'd try a single table that contains all attributes that might apply to a record. Irrelevant attributes can be null. You can enforce null values for a specific type with a check constraint.
If that doesn't work out, you can create three tables for each record type, without a common table.
If that doesn't work out, you can create a base table with 1:1 extension tables. Be aware that querying that is much harder, requiring join for every operation:
select *
from fruit f
left join
apple a
on a.fruit_id = f.id
left join
pear p
on p.fruit_id = f.id
left join
...
The more complex the design, the more room for an inconsistent database state. The second option you could have a pear and an apple with the same id. In the third option you can have missing rows in either the base or the extension table. Or the tables can contradict each other, for example a base row saying "pear" with an extension row in the Apple table. I fully trust end users to find a way to get that into your database :)
Throw out the complex design and start with the simplest one. Your first attempt was not a failure: you now know the cost of adding relations between tables. Which can look deceptively trivial (or even "right") at design time.
This is a typical "object-oriented to relational" mapping problem. You can find books about this. Also a lot of google hits like
http://www.ibm.com/developerworks/library/ws-mapping-to-rdb/
The easiest for you to implement is to have one table containing all columns necessary to store all your types. Make sure you define them as nullable. Only the common columns can be not null if necessary.
Just because object share some of the same properties does not mean you need to have one table for both objects. That leads to unnecessary right outer joins that have a 1 to 1 relationship which is not what I think of as good database design.
but...
If you want to continue in your fashion I think all you need is a primary key in the table with common columns "id, name, groupid, userid" (I assume ID) then that would be the foreign key to your table with currentValue, maxValue, overMaxAllowed, underNegativeAllowed

Would "dereferencing" a foreign key in SQL theoretically work?

Suppose we have 2 tables, a and b:
CREATE TABLE a (id_a INT NOT NULL PRIMARY KEY, id_b INT NOT NULL)
INDEX fk_id_b (id_b ASC),
CONSTRAINT fk_id_b FOREIGN KEY (id_b)
REFERENCES b (id_b);
CREATE TABLE b (id_b INT NOT NULL PRIMARY KEY, b_data INT NOT NULL);
So a has the following columns: id_a and id_b, where id_b is a foreign key to bs id_b.
When I want to get the associated b_data from a, I have to do a join:
SELECT id_a, b_data FROM a JOIN b ON a.id_b=b.id_b;
It works fine, but it's long, I repeat myself (which I shouldn't according to the ruby guys), so I thought of a way to make this query shorter, easier to understand and still unambiguous:
SELECT id_a, id_b->b_data FROM a;
foreign_key->column would behave like a pointer to a structure, the database would automatically join the needed tables.
I know this doesn't exist, that making it a standard would probably take so much time I wouldn't live to see it in production ready database systems and some people wouldn't want it as "it looks weird", but I would at least like to know, if it would be possible, and if not, why.
First
Ruby isn't SQL, SQL isn't Ruby
SQL also predates almost every current mainstream or fashionable language
However, one thing to bear in mind, and the most important...
Repeating the JOIN is not the same as repeating the query. You'll have different
WHERE filters
SELECT list
Maybe an aggregate
Each of these is different query and will require different indexes/plans
Using a view to mask the JOIN will be the next great idea suggestion to "encapsulate" it. However, you'll end up with view joining view joining view... and a view is just a macro that expands. So your queries will start to run poorly.
Using an indexed view may not be a solution because of different filters etc
Edit, from Dems:
These types of ideas work in simple cases, but create more problems in complex cases. The current syntax handles expression of set based queries equally well/poorly across a very wide range of complexity.
One of the major advantages of the relational model of data is that it eliminates the need to rely on hard coded links/pointers/navigational structures between tables. Data access is via table and attribute names using relational expressions like joins.
A model that persisted navigational structures in the database would be less flexible and dynamic - when you changed table structures you would invalidate or have to change the navigational structures as well. Your question also only addresses those joins which happen to be equijoins on foreign keys. Joins are much more general than that.
SQL has a NATURAL JOIN operator e.g. your query would be:
SELECT DISTINCT *
FROM a NATURAL JOIN b;
However, it looks like you want to do a semi-join, for which SQL has no specific operator :(
As you are interested in language design, consider the truly relational language Tutorial D (designed for academic purposes) has a semi-join operator MATCHING e.g. your query would simply be:
a MATCHING b;

Naming of ID columns in database tables

I was wondering peoples opinions on the naming of ID columns in database tables.
If I have a table called Invoices with a primary key of an identity column I would call that column InvoiceID so that I would not conflict with other tables and it's obvious what it is.
Where I am workind current they have called all ID columns ID.
So they would do the following:
Select
i.ID
, il.ID
From
Invoices i
Left Join InvoiceLines il
on i.ID = il.InvoiceID
Now, I see a few problems here:
1. You would need to alias the columns on the select
2. ID = InvoiceID does not fit in my brain
3. If you did not alias the tables and referred to InvoiceID is it obvious what table it is on?
What are other peoples thoughts on the topic?
I always prefered ID to TableName + ID for the id column and then TableName + ID for a foreign key. That way all tables have a the same name for the id field and there isn't a redundant description. This seems simpler to me because all the tables have the same primary key field name.
As far as joining tables and not knowing which Id field belongs to which table, in my opinion the query should be written to handle this situation. Where I work, we always prefece the fields we use in a statement with the table/table alias.
Theres been a nerd fight about this very thing in my company of late. The advent of LINQ has made the redundant tablename+ID pattern even more obviously silly in my eyes. I think most reasonable people will say that if you're hand writing your SQL in such a manner as that you have to specify table names to differentiate FKs then it's not only a savings on typing, but it adds clarity to your SQL to use just the ID in that you can clearly see which is the PK and which is the FK.
E.g.
FROM Employees e
LEFT JOIN Customers c ON e.ID = c.EmployeeID
tells me not only that the two are linked, but which is the PK and which is the FK. Whereas in the old style you're forced to either look or hope that they were named well.
ID is a SQL Antipattern.
See http://www.amazon.com/s/ref=nb_sb_ss_i_1_5?url=search-alias%3Dstripbooks&field-keywords=sql+antipatterns&sprefix=sql+a
If you have many tables with ID as the id you are making reporting that much more difficult. It obscures meaning and makes complex queries harder to read as well as requiring you to use aliases to differentiate on the report itself.
Further if someone is foolish enough to use a natural join in a database where they are available, you will join to the wrong records.
If you would like to use the USING syntax that some dbs allow, you cannot if you use ID.
If you use ID you can easily end up with a mistaken join if you happen to be copying the join syntax (don't tell me that no one ever does this!)and forget to change the alias in the join condition.
So you now have
select t1.field1, t2.field2, t3.field3
from table1 t1
join table2 t2 on t1.id = t2.table1id
join table3 t3 on t1.id = t3.table2id
when you meant
select t1.field1, t2.field2, t3.field3
from table1 t1
join table2 t2 on t1.id = t2.table1id
join table3 t3 on t2.id = t3.table2id
If you use tablenameID as the id field, this kind of accidental mistake is far less likely to happen and much easier to find.
We use InvoiceID, not ID. It makes queries more readable -- when you see ID alone it could mean anything, especially when you alias the table to i.
I agree with Keven and a few other people here that the PK for a table should simply be Id and foreign keys list the OtherTable + Id.
However I wish to add one reason which recently gave more weight to this arguement.
In my current position we are employing the entity framework using POCO generation. Using the standard naming convention of Id the the PK allows for inheritance of a base poco class with validation and such for tables which share a set of common column names. Using the Tablename + Id as the PK for each of these tables destroys the ability to use a base class for these.
Just some food for thought.
It's not really important, you are likely to run into simalar problems in all naming conventions.
But it is important to be consistent so you don't have to look at the table definitions every time you write a query.
My preference is also ID for primary key and TableNameID for foreign key. I also like to have a column "name" in most tables where I hold the user readable identifier (i.e. name :-)) of the entry. This structure offers great flexibility in the application itself, I can handle tables in mass, in the same way. This is a very powerful thing. Usually an OO software is built on top of the database, but the OO toolset cannot be applied because the db itself does not allow it. Having the columns id and name is still not very good, but it is a step.
Select
i.ID , il.ID From
Invoices i
Left Join InvoiceLines il
on i.ID = il.InvoiceID
Why cant I do this?
Select
Invoices.ID
, InvoiceLines.ID
From
Invoices
Left Join InvoiceLines
on Invoices.ID = InvoiceLines.InvoiceID
In my opinion this is very much readable and simple. Naming variables as i and il is a poor choice in general.
I just started working in a place that uses only "ID" (in the core tables, referenced by TableNameID in foreign keys), and have already found TWO production problems directly caused by it.
In one case the query used "... where ID in (SELECT ID FROM OtherTable ..." instead of "... where ID in (SELECT TransID FROM OtherTable ...".
Can anyone honestly say that wouldn't have been much easier to spot if full, consistent names were used where the wrong statement would have read "... where TransID in (SELECT OtherTableID from OtherTable ..."? I don't think so.
The other issue occurs when refactoring code. If you use a temp table whereas previously the query went off a core table then the old code reads "... dbo.MyFunction(t.ID) ..." and if that is not changed but "t" now refers to a temp table instead of the core table, you don't even get an error - just erroneous results.
If generating unnecessary errors is a goal (maybe some people don't have enough work?), then this kind of naming convention is great. Otherwise consistent naming is the way to go.
I personally prefer (as it has been stated above) the Table.ID for the PK and TableID for the FK. Even (please don't shoot me) Microsoft Access recommends this.
HOWEVER, I ALSO know for a fact that some generating tools favor the TableID for PK because they tend to link all column name that contain 'ID' in the word, INCLUDING ID!!!
Even the query designer does this on Microsoft SQL Server (and for each query you create, you end up ripping off all the unnecessary newly created relationships on all tables on column ID)
THUS as Much as my internal OCD hates it, I roll with the TableID convention. Let's remember that it's called a Data BASE, as it will be the base for hopefully many many many applications to come. And all technologies Should benefit of a well normalized with clear description Schema.
It goes without saying that I DO draw my line when people start using TableName, TableDescription and such. In My opinion, conventions should do the following:
Table name: Pluralized. Ex. Employees
Table alias: Full table Name, singularized. Ex.
SELECT Employee.*, eMail.Address
FROM Employees AS Employee LEFT JOIN eMails as eMail on Employee.eMailID = eMail.eMailID -- I would sure like it to just have the eMail.ID here.... but oh well
[Update]
Also, there are some valid posts in this thread about duplicated columns due of the "kind of relationship" or role. Example, if a Store has an EmployeeID, that tells me squat. So I sometimes do something like Store.EmployeeID_Manager. Sure it's a bit larger but at leas people won't go crazy trying to find table ManagerID, or what EmployeeID is doing there. When querying is WHERE I would simplify it as:
SELECT EmployeeID_Manager as ManagerID FROM Store
For the sake of simplicity most people name the column on the table ID. If it has a foreign key reference on another table, then they explicity call it InvoiceID (to use your example) in the case of joins, you are aliasing the table anyway so the explicit inv.ID is still simpler than inv.InvoiceID
Coming at this from the perspective of a formal data dictionary, I would name the data element invoice_ID. Generally, a data element name will be unique in the data dictionary and ideally will have the same name throughout, though sometimes additional qualifying terms may be required based on context e.g. the data element named employee_ID could be used twice in the org chart and therefore qualified as supervisor_employee_ID and subordinate_employee_ID respectively.
Obviously, naming conventions are subjective and a matter of style. I've find ISO/IEC 11179 guidelines to be a useful starting point.
For the DBMS, I see tables as collections of entites (except those that only ever contain one row e.g. cofig table, table of constants, etc) e.g. the table where my employee_ID is the key would be named Personnel. So straight away the TableNameID convention doesn't work for me.
I've seen the TableName.ID=PK TableNameID=FK style used on large data models and have to say I find it slightly confusing: I much prefer an identifier's name be the same throughout i.e. does not change name based on which table it happens to appear in. Something to note is the aforementioned style seems to be used in the shops which add an IDENTITY (auto-increment) column to every table while shunning natural and compound keys in foreign keys. Those shops tend not to have formal data dictionaries nor build from data models. Again, this is merely a question of style and one to which I don't personally subscribe. So ultimately, it's not for me.
All that said, I can see a case for sometimes dropping the qualifier from the column name when the table's name provides a context for doing so e.g. the element named employee_last_name may become simply last_name in the Personnel table. The rationale here is that the domain is 'people's last names' and is more likely to be UNIONed with last_name columns from other tables rather than be used as a foreign key in another table, but then again... I might just change my mind, sometimes you can never tell. That's the thing: data modelling is part art, part science.
My vote is for InvoiceID for the table ID. I also use the same naming convention when it's used as a foreign key and use intelligent alias names in the queries.
Select Invoice.InvoiceID, Lines.InvoiceLine, Customer.OrgName
From Invoices Invoice
Join InvoiceLines Lines on Lines.InvoiceID = Invoice.InvoiceID
Join Customers Customer on Customer.CustomerID = Invoice.CustomerID
Sure, it's longer than some other examples. But smile. This is for posterity and someday, some poor junior coder is going to have to alter your masterpiece. In this example there is no ambiguity and as additional tables get added to the query, you'll be grateful for the verbosity.
FWIW, our new standard (which changes, uh, I mean "evolves", with every new project) is:
Lower case database field names
Uppercase table names
Use underscores to separate words in the field name - convert these to Pascal case in code.
pk_ prefix means primary key
_id suffix means an integer, auto-increment ID
fk_ prefix means foreign key (no suffix necessary)
_VW suffix for views
is_ prefix for booleans
So, a table named NAMES might have the fields pk_name_id, first_name, last_name, is_alive, and fk_company and a view called LIVING_CUSTOMERS_VW, defined like:
SELECT first_name, last_name
FROM CONTACT.NAMES
WHERE (is_alive = 'True')
As others have said, though, just about any scheme will work as long as it is consistent and doesn't unnecessarily obfuscate your meanings.
There are lots of answers on this already, but I wanted to add two major things that I haven't seen above:
Customers coming to you for support.
Many times a customer or user or even dev of another department have hit a snag and have contacted us saying they're having a problem doing an operation. We ask them what record they're having a problem with. Now, the data they see on the screen, e.g. a grid with customer name, number of orders, destination etc is an aggregate of many tables. They say they've having trouble with id 83. There's no way to know what id that is, which table it is, if it's just called 'id'.
Namely, a row of data does not give any indication which table it is from. Unless you happen to know the schema of your database well, which is rarely the case on complex systems or non-greenfield systems you've been told to take over, you don't know what id=83 means even if you have more data like name, address, etc (which might not even be in the same table!).
This id could be coming from a grid, or it could be coming from an error in your API, or a faulty query dumping the error message to the screen, or to a log file.
Often a developer just dumps 'ID' into a column and forgets about it, and often DBs have many similar tables like Invoice, InvoiceGrouping, InvoicePlan and the ID could be for any of them. In frustration you look in the code to see which one it is, and see that they've called it Id on the model as well, so you then have to dig into how the model for the page was constructed. I cannot count how many times I've had to do this to figure out what an Id is. It's a lot. Sometimes you have to dig out a SPROC as well that just returns 'Id' as a header. Nightmare.
Log files are easier when it's clear what went wrong
Often SQL can give pretty crappy error messages. "Could not insert item with ID 83, column would be truncated" or something like that is very hard to debug. Often error messages are not very helpful, but usually the thing that broke will make a vague attempt to tell you what record was broken by just dumping out the primary key name and the value. If it's "ID" then it doesn't really help at all.
This is just two things that I didn't feel were mentioned in the other answers.
I also think that a lot of comments are 'if you program in X way then this isn't an issue', and I think the points above (and other points on this question) are valid specifically because of the way people program and because they don't have the time, energy, budget and foresight to program in perfect logging and error handling or change engrained habits of quick SQL and code writing.
I definitely agree with including the table name in the ID field name, for exactly the reasons you give. Generally, this is the only field where I would include the table name.
I do hate the plain id name. I strongly prefer to always use the invoice_id or a variant thereof. I always know which table is the authoritative table for the id when I need to, but this confuses me
SELECT * from Invoice inv, InvoiceLine inv_l where
inv_l.InvoiceID = inv.ID
SELECT * from Invoice inv, InvoiceLine inv_l where
inv_l.ID = inv.InvoiceLineID
SELECT * from Invoice inv, InvoiceLine inv_l where
inv_l.ID = inv.InvoiceID
SELECT * from Invoice inv, InvoiceLine inv_l where
inv_l.InvoiceLineID = inv.ID
What's worst of all is the mix you mention, totally confusing. I've had to work with a database where almost always it was foo_id except in one of the most used ids. That was total hell.
I think you can use anything for the "ID" as long as you're consistent. Including the table name is important to. I would suggest using a modeling tool like Erwin to enforce the naming conventions and standards so when writing queries it's easy to understand the relationships that may exist between tables.
What I mean by the first statement is, instead of ID you can use something else like 'recno'. So then this table would have a PK of invoice_recno and so on.
Cheers,
Ben
For the column name in the database, I'd use "InvoiceID".
If I copy the fields into a unnamed struct via LINQ, I may name it "ID" there, if it's the only ID in the structure.
If the column is NOT going to be used in a foreign key, so that it's only used to uniquely identify a row for edit editing or deletion, I'll name it "PK".
If you give each key a unique name, e.g. "invoices.invoice_id" instead of "invoices.id", then you can use the "natural join" and "using" operators with no worries. E.g.
SELECT * FROM invoices NATURAL JOIN invoice_lines
SELECT * FROM invoices JOIN invoice_lines USING (invoice_id)
instead of
SELECT * from invoices JOIN invoice_lines
ON invoices.id = invoice_lines.invoice_id
SQL is verbose enough without making it more verbose.
What I do to keep things consistent for myself (where a table has a single column primary key used as the ID) is to name the primary key of the table Table_pk. Anywhere I have a foreign key pointing to that tables primary key, I call the column PrimaryKeyTable_fk. That way I know that if I have a Customer_pk in my Customer table and a Customer_fk in my Order table, I know that the Order table is referring to an entry in the Customer table.
To me, this makes sense especially for joins where I think it reads easier.
SELECT *
FROM Customer AS c
INNER JOIN Order AS c ON c.Customer_pk = o.Customer_fk
I prefer DomainName || 'ID'. (i.e. DomainName + ID)
DomainName is often, but not always, the same as TableName.
The problem with ID all by itself is that it doesn't scale upwards. Once you have about 200 tables, each with a first column named ID, the data begins to look all alike. If you always qualify ID with the table name, that helps a little, but not that much.
DomainName & ID can be used to name foreign keys as well as primary keys. When foriegn keys are named after the column that they reference, that can be of mnemonic assistance. Formally, tying the name of a foreign key to the key it references is not necessary, since the referential integrity constrain will establish the reference. But it's awfully handy when it comes to reading queries and updates.
Occasionally, DomainName || 'ID' can't be used, because there would be two columns in the same table with the same name. Example: Employees.EmployeeID and Employees.SupervisorID. In those cases, I use RoleName || 'ID', as in the example.
Last but not least, I use natural keys rather than synthetic keys when possible. There are situations where natural keys are unavailable or untrustworthy, but there are plenty of situations where the natural key is the right choice. In those cases, I let the natural key take on the name it would naturally have. This name often doesn't even have the letters, 'ID' in it. Example: OrderNo where No is an abbreviation for "Number".
For each table I choose a tree letter shorthand(e.g. Employees => Emp)
That way a numeric autonumber primary key becomes nkEmp.
It is short, unique in the entire database and I know exactly its properties at a glance.
I keep the same names in SQL and all languages I use (mostly C#, Javascript, VB6).
See the Interakt site's naming conventions for a well thought out system of naming tables and columns. The method makes use of a suffix for each table (_prd for a product table, or _ctg for a category table) and appends that to each column in a given table. So the identity column for the products table would be id_prd and is therefore unique in the database.
They go one step further to help with understanding the foreign keys: The foreign key in the product table that refers to the category table would be idctg_prd so that it is obvious to which table it belong (_prd suffix) and to which table it refers (category).
Advantages are that there is no ambiguity with the identity columns in different tables, and that you can tell at a glance which columns a query is referring to by the column names.
You could use the following naming convention. It has its flaws but it solves your particular problems.
Use short (3-4 characters) nicknames for the table names, i.e. Invoice - inv, InvoiceLines - invl
Name the columns in the table using those nicknames, i.e. inv_id, invl_id
For the reference columns use invl_inv_id for the names.
this way you could say
SELECT * FROM Invoice LEFT JOIN InvoiceLines ON inv_id = invl_inv_id

Decision between storing lookup table id's or pure data

I find this comes up a lot, and I'm not sure the best way to approach it.
The question I have is how to make the decision between using foreign keys to lookup tables, or using lookup table values directly in the tables requesting it, avoiding the lookup table relationship completely.
Points to keep in mind:
With the second method you would
need to do mass updates to all
records referencing the data if it
is changed in the lookup table.
This is focused more
towards tables that have a lot of
the column's referencing many lookup
tables.Therefore lots of foreign
keys means a lot of
joins every time you query the
table.
This data would be coming from drop
down lists which would be pulled
from the lookup tables. In order to match up data when reloading, the values need to be in the existing list (related to the first point).
Is there a best practice here, or any key points to consider?
You can use a lookup table with a VARCHAR primary key, and your main data table uses a FOREIGN KEY on its column, with cascading updates.
CREATE TABLE ColorLookup (
color VARCHAR(20) PRIMARY KEY
);
CREATE TABLE ItemsWithColors (
...other columns...,
color VARCHAR(20),
FOREIGN KEY (color) REFERENCES ColorLookup(color)
ON UPDATE CASCADE ON DELETE SET NULL
);
This solution has the following advantages:
You can query the color names in the main data table without requiring a join to the lookup table.
Nevertheless, color names are constrained to the set of colors in the lookup table.
You can get a list of unique colors names (even if none are currently in use in the main data) by querying the lookup table.
If you change a color in the lookup table, the change automatically cascades to all referencing rows in the main data table.
It's surprising to me that so many other people on this thread seem to have mistaken ideas of what "normalization" is. Using a surrogate keys (the ubiquitous "id") has nothing to do with normalization!
Re comment from #MacGruber:
Yes, the size is a factor. In InnoDB for example, every secondary index stores the primary key value of the row(s) where a given index value occurs. So the more secondary indexes you have, the greater the overhead for using a "bulky" data type for the primary key.
Also this affects foreign keys; the foreign key column must be the same data type as the primary key it references. You might have a small lookup table so you think the primary key size in a 50-row table doesn't matter. But that lookup table might be referenced by millions or billions of rows in other tables!
There's no right answer for all cases. Any answer can be correct for different cases. You just learn about the tradeoffs, and try to make an informed decision on a case by case basis.
In cases of simple atomic values, I tend to disagree with the common wisdom on this one, mainly on the complexity front. Consider a table containing hats. You can do the "denormalized" way:
CREATE TABLE Hat (
hat_id INT NOT NULL PRIMARY KEY,
brand VARCHAR(255) NOT NULL,
size INT NOT NULL,
color VARCHAR(30) NOT NULL /* color is a string, like "Red", "Blue" */
)
Or you can normalize it more by making a "color" table:
CREATE TABLE Color (
color_id INT NOT NULL PRIMARY KEY,
color_name VARCHAR(30) NOT NULL
)
CREATE TABLE Hat (
hat_id INT NOT NULL PRIMARY KEY,
brand VARCHAR(255) NOT NULL,
size INT NOT NULL,
color_id INT NOT NULL REFERENCES Color(color_id)
)
The end result of the latter is that you've added some complexity - instead of:
SELECT * FROM Hat
You now have to say:
SELECT * FROM Hat H INNER JOIN Color C ON H.color_id = C.color_id
Is that extra join a huge deal? No - in fact, that's the foundation of the relational design model - normalizing allows you to prevent possible inconsistencies in the data. But every situation like this adds a little bit of complexity, and unless there's a good reason, it's worth asking why you're doing it. I consider possible "good reasons" to include:
Are there other attributes that "hang off of" this attribute? Are you capturing, say, both "color name" and "hex value", such that hex value is always dependent on color name? If so, then you definitely want a separate color table, to prevent situations where one row has ("Red", "#FF0000") and another has ("Red", "#FF3333"). Multiple correlated attributes are the #1 signal that an entity should be normalized.
Will the set of possible values change frequently? Using a normalized lookup table will make future changes to the elements of the set easier, because you're just updating a single row. If it's infrequent, though, don't balk at statements that have to update lots of rows in the main table instead; databases are quite good at that. Do some speed tests if you're not sure.
Will the set of possible values be directly administered by the users? I.e. is there a screen where they can add / remove / reorder the elements in the list? If so, a separate table is a must, obviously.
Will the list of distinct values power some UI element? E.g. is "color" a droplist in the UI? Then you'll be better off having it in its own table, rather than doing a SELECT DISTINCT on the table every time you need to show the droplist.
If none of those apply, I'd be hard pressed to find another (good) reason to normalize. If you just want to make sure that the value is one of a certain (small) set of legal values, you're better off using a CONSTRAINT that says the value must be in a specific list; keeps things simple, and you can always "upgrade" to a separate table later if the need arises.
One thing no one has considered is that you would not join to the lookup table if the data in it can change over time and the records joined to are historical. The example is a parts table and an order table. The vendors may drop parts or change part numbers, but the orders table should alawys have exactly what was ordered at the time it was ordered. Therefore, it should lookup the data to do the record insert but should never join to the lookup table to get information about an existing order. Instead the part number and description and price, etc. should be stored in the orders table. This is espceially critical so that price changes do not propagate through historical data and make your financial records inaccurate. In this case, you would also want to avoid using any kind of cascading update as well.
rauhr.myopenid.com wrote:
The way we decided to solve this problem is with 4th normal form.
...
That is not 4th normal form. That is a common mistake called One True Lookup:
http://www.dbazine.com/ofinterest/oi-articles/celko22
4th normal form is :
http://en.wikipedia.org/wiki/Fourth_normal_form
Normalization is pretty universally regarded as part of best practices in databases, and normalization says yeah, you push the data out and refer to it by key.
Since no one else has addressed your second point: When queries become long and difficult to read and write due to all those joins, a view will usually resolve that.
You can even make it a rule to always program against the views, having the view get the lookups.
This makes it possible to optimize the view and make your code resistant to changes in the tables.
In oracle, you could even convert the view into a materialized view if you ever need to.

Why specify primary/foreign key attributes in column names

A couple of recent questions discuss strategies for naming columns, and I was rather surprised to discover the concept of embedding the notion of foreign and primary keys in column names. That is
select t1.col_a, t1.col_b, t2.col_z
from t1 inner join t2 on t1.id_foo_pk = t2.id_foo_fk
I have to confess I have never worked on any database system that uses this sort of scheme, and I'm wondering what the benefits are. The way I see it, once you've learnt the N principal tables of a system, you'll write several orders of magnitude more requests with those tables.
To become productive in development, you'll need to learn which tables are the important tables, and which are simple tributaries. You'll want to commit an good number of column names to memory. And one of the basic tasks is to join two tables together. To reduce the learning effort, the easiest thing to do is to ensure that the column name is the same in both tables:
select t1.col_a, t1.col_b, t2.col_z
from t1 inner join t2 on t1.id_foo = t2.id_foo
I posit that, as a developer, you don't need to be reminded that much about which columns are primary keys, which are foreign and which are nothing. It's easy enough to look at the schema if you're curious. When looking at a random
tx inner join ty on tx.id_bar = ty.id_bar
... is it all that important to know which one is the foreign key? Foreign keys are important only to the database engine itself, to allow it to ensure referential integrity and do the right thing during updates and deletes.
What problem is being solved here? (I know this is an invitation to discuss, and feel free to do so. But at the same time, I am looking for an answer, in that I may be genuinely missing something).
I agree with you. Putting this information in the column name smacks of the crappy Hungarian Notation idiocy of the early Windows days.
I agree with you that the foreign key column in a child table should have the same name as the primary key column in the parent table. Note that this permits syntax like the following:
SELECT * FROM foo JOIN bar USING (foo_id);
The USING keyword assumes that a column exists by the same name in both tables, and that you want an equi-join. It's nice to have this available as shorthand for the more verbose:
SELECT * FROM foo JOIN bar ON (foo.foo_id = bar.foo_id);
Note, however, there are cases when you can't name the foreign key the same as the primary key it references. For example, in a table that has a self-reference:
CREATE TABLE Employees (
emp_id INT PRIMARY KEY,
manager_id INT REFERENCES Employees(emp_id)
);
Also a table may have multiple foreign keys to the same parent table. It's useful to use the name of the column to describe the nature of the relationship:
CREATE TABLE Bugs (
...
reported_by INT REFERENCES Accounts(account_id),
assigned_to INT REFERENCES Accounts(account_id),
...
);
I don't like to include the name of the table in the column name. I also eschew the obligatory "id" as the name of the primary key column in every table.
I've espoused most of the ideas proposed here over the 20-ish years I've been developing with SQL databases, I'm embarrassed to say. Most of them delivered few or none of the expected benefits and were with hindsight, a pain in the neck.
Any time I've spent more than a few hours with a schema I've fairly rapidly become familiar with the most important tables and their columns. Once it got to a few months, I'd pretty much have the whole thing in my head.
Who is all this explanation for? Someone who only spends a few minutes with the design isn't going to be doing anything serious anyway. Someone who plans to work with it for a long time will learn it if you named your columns in Sanskrit.
Ignoring compound primary keys, I don't see why something as simple as "id" won't suffice for a primary key, and "_id" for foreign keys.
So a typical join condition becomes customer.id = order.customer_id.
Where more than one association between two tables exists, I'd be inclined to use the association rather than the table name, so perhaps "parent_id" and "child_id" rather than "parent_person_id" etc
I only use the tablename with an Id suffix for the primary key, e.g. CustomerId, and foreign keys referencing that from other tables would also be called CustomerId. When you reference in the application it becomes obvious the table from the object properties, e.g. Customer.TelephoneNumber, Customer.CustomerId, etc.
I used "fk_" on the front end of any foreign keys for a table mostly because it helped me keep it straight when developing the DB for a project at my shop. Having not done any DB work in the past, this did help me. In hindsight, perhaps I didn't need to do that but it was three characters tacked onto some column names so I didn't sweat it.
Being a newcomer to writing DB apps, I may have made a few decisions which would make a seasoned DB developer shudder, but I'm not sure the foreign key thing really is that big a deal. Again, I guess it is a difference in viewpoint on this issue and I'll certainly take what you've written and cogitate on it.
Have a good one!
I agree with you--I take a different approach that I have seen recommended in many corporate environments:
Name columns in the format TableNameFieldName, so if I had a Customer table and UserName was one of my fields, the field would be called CustomerUserName. That means that if I had another table called Invoice, and the customer's user name was a foreign key, I would call it InvoiceCustomerUserName, and when I referenced it, I would call it Invoice.CustomerUserName, which immediately tells me which table it's in.
Also, this naming helps you to keep track of the tables your columns are coming from when you're joiining.
I only use FK_ and PK_ in the ACTUAL names of the foreign and primary keys in the DBMS.