Why is cmake file GLOB evil? - cmake

The CMake doc says about the command file GLOB:
We do not recommend using GLOB to collect a list of source files from your source tree. If no CMakeLists.txt file changes when a source is added or removed then the generated build system cannot know when to ask CMake to regenerate.
Several discussion threads in the web second that globbing source files is evil.
However, to make the build system know that a source has been added or removed, it's sufficient to say
touch CMakeLists.txt
Right?
Then that's less effort than editing CMakeLists.txt to insert or delete a source file name. Nor is it more difficult to remember. So I don't see any good reason to advise against file GLOB.
What's wrong with this argument?

The problem is when you're not alone working on a project.
Let's say project has developer A and B.
A adds a new source file x.c. He doesn't changes CMakeLists.txt and commits after he's finished implementing x.c.
Now B does a git pull, and since there have been no modifications to the CMakeLists.txt, CMake isn't run again and B causes linker errors when compiling, because x.c has not been added to its source files list.
2020 Edit: CMake 3.12 introduces the CONFIGURE_DEPENDS argument to file(GLOB which makes globbing scan for new files: https://cmake.org/cmake/help/v3.12/command/file.html#filesystem
This is however not portable (as Visual Studio or Xcode solutions don't support the feature) so please only use that as a first approximation, else other people can have trouble building your CMake files under their IDE of choice!

It's not inherently evil - it has advantanges and disadvantages, covered relatively well in this answer here on StackOverflow. But if you use it carelessly, you could end up ignoring dependency changes and requiring clean rebuilds of large parts of your codebase.
I'm personally in favor of using it - in smaller projects, or on certain subdirectories in larger ones - to avoid having to enter every file manually into the build files. Edit: My preference has changed and I currently tend to avoid it.

On top of the reasons other people here posted, imho the worst issue with glob is that it can yield DIFFERENT file lists on different platforms. As I see it, that's a bug. In OSX glob ignores case sensitivity and in a ubuntu box it doesn't.

Globbing breaks all code inspection in things like CLion that otherwise understand limited subsets of CMakeLists.txt and do not and never will support globbing as it is unsafe.
Write script to dump the globbed list and paste it in, its very simple, and then CLion can actually find the referenced files and infer them as useful. Maybe even put such script into the tree so that the other devs can either run it without being a moron OR set git hooks to make it happen.
In no case should some random file dropped into some directory ever get automatically linked that's how trojans happen.
Also CLion without context jumping to known definitions and what not, is like hiking barefoot /// why bother.

Related

Find out why cmake adds specific link flags

I have big project with cmake. It mostly works.
But recently some combination of compilation server vs test server broke. Investigation found that final compile/link command calls gcc (...) -licudata -licui18n -licuuc (...), this introduces dependency on shared library which is not present on test server.
How do I find out what in my project (my library, imported library, found library, whatever) adds those 3 flags to compile command?
I don't add them explicitly, so something is done automagically and I want to find it. compile_commands.json doesn't have them because linking flags don't belong in it. CMakeCache.txt has those flags in some obscure variable PC_LIBXML_STATIC_LIBRARIES:INTERNAL but removing them there doesn't affect compile/link command.
Note that this question is not about dealing with libicu specifically but about a method for investigation in general (though comments about eventual known problems with libicu would be appreciated too).
I found out that dependency graphs created by cmake can have more details that was configured for our project. Here are all options: https://cmake.org/cmake/help/latest/module/CMakeGraphVizOptions.html I expect GRAPHVIZ_EXTERNAL_LIBS, GRAPHVIZ_SHARED_LIBS are most important to set to true.
We enabled everything that was possible to enable, filtered out nothing and resulting graph was massive (to big for xdot - luckily .dot files are human readable), but showed that Boost::regex uses those 3 libraries.

How to keep CMake generated files?

I'm using add_custom_command() to generate some files. ninja clean removes them, as it should. One of the files is intended as a default/example implementation, to be modified by the user. It is only generated if it does not already exist. I would like for ninja clean not to remove this file.
I have tried a number of things but without success:
add_custom_target(): CMake complains about the missing file unless I name it in BYPRODUCTS, but doing this also leads to removal on clean
set_file_properties(... GENERATED FALSE) doesn't work because CMake complains about the file missing.
set_directory_properties() failed in a similar way: "folder doesn't exist or not yet processed" (it does exist)
I previously generated the example implementation and just let the user copy it or model their code on it. This works, but isn't entirely satisfactory. Is my use-case so unlikely that CMake doesn't support it?
I am afraid you requirment (conceptually, have make create something which make clean does not remove) is rather unusual. I can think of two potential solutions/workarounds.
One, move the file's generation to CMake time. That is, create it using execute_process() instead of add_custom_command(). This may or may not be possible, based on whether the file-generation process (the current custom command) depends on the rest of the build or not.
Two, totally hide the example file's existence from CMake. That is, have the custom command also generate some other file (maybe just a timestamp file) and have its driving custom target depend on that one instead. Do not list the example file as ither the custom command's dependency, output, or byproduct. That way, nothing will depend on it and neither CMake nor Ninja should not care whether it exists or not, so they will not complain or try to clean it up.
If it is an example for the user, it should not be in your build folder, but in the install folder. I don't see why you would need add_custom_command or the other commands you listed.
Therefore, you have to provide install() instructions.
You can then call make install. Cleaning will not remove those and only installing again will overwrite them if necessary.
For those, who come here a long time after the original question was asked (like me), I'll write my solution:
The tool called in add_custom_command generates two files with identical content:
one that is saved in sources, never mentioned anywhere
and one that's marked as byproduct, and then is depended on
So the first one is the file we wanted in the first place.
And the second one is actually used in build process, and gets deleted on clean.
For me the issue is that I actually want to save generated files in VCS so I can track changes. And this approach gives ne what I need.

where is the list of names that cmake reserves?

Everything is in the title, but for more context informations:
I am creating a library, where all components are independent (it's only because it's easier to manage 1 git repo, really).
In that library's root folder, I have 1 sub-folder for each part of the library's components, with exactly 3 "interesting folders" (src,tests,include/components_name). I have hardcoded those folders in a foreach loop so that all actions will be done for all modules by default.
The problem seems to be that, one of the modules is named "option_parser" which is, indeed, relatively generic, and also seems to be "reserved" by cmake, and same for everything derived from it. I've tried "option_parser_test", "option_parser_tests", and other random names based on "option_parser_" root.
So, here is my question: where I can learn how to avoid names that cmake reserves?
And how can I affect them anyway to my binaries (because, I feel like it's stupid to change a project's name because of a build system. Might be a strong enough reason to switch it.)
It's really quite simple. Use these three commands to see all reserved words:
cmake --help-command-list
cmake --help-variable-list
cmake --help-property-list
The answer of Cinder Biscuits above should probably already help you.
Additionally, you should probably read CMake's own documentation regarding the CMake language and in particular the note in the "Variables" section:
Note: CMake reserves identifiers that:
begin with CMAKE_ (upper-, lower-, or mixed-case), or
begin with _CMAKE_ (upper-, lower-, or mixed-case), or
begin with _ followed by the name of any CMake Command.

Can CMakeLists.txt depend on a file parsed by a function?

I am rather new to CMake, starting off for the first time with a larger project consisting of many subprojects.
For particular reasons (described below for the curious) I already have a set of include files that contain info about the source files needed for each CMake target (lib or exe) – and, for now, I prefer to (re)use these files (reason also described below)
Writing a function to parse these files and add their content as source files to the targets was a surprisingly easy task.
But – now the Problem:
Obviously I want to have each targets CMakeLists.txt depend on the particular include file, that generates the list of source files, so that changes on the include file will be detected as if it were changes to CMakeLists.txt itself, but I simply can’t find any references on how to accomplish that.
N.B.: I found AddFileDependencies but that is for adding dependencies on source files, not the CMakeLists.txt. However, CMake itself can figure out dependencies to included .cmake file somehow, so I figured, it should be possible to do somehow.
Background for the curious:
For this project (quite a number of libraries used by quite a number of executable targets, all organized as subprojects) I was using QMake (without actually using Qt itself) for setting up makefiles. Doing so I was able to use Qt Creator while still being able to generate Visual Studio Solution/Project files automagically. We’re also still in progress of evaluating different IDEs and the choice has not been made yet. But the most important reason to use a generator like QMake / CMake was not being forced to set up the VS files for all these subprojects manually.
Although I needed to trick QMake sometimes to do what I wanted to, things went quite well - even for the VS solution - except for one thing: Visual Studio messes up dependencies on Flex/Bison and other files using custom build rules. It keeps recompiling the Flex/Bison/other files saying „command line changed“ – which I gave up trying to fix.
For this reason I thougt, I’d try CMake as a generator instead, which looks very promising so far – although not having builtin precompiled header support in CMake is somewhat ridiculous these days (off topic, I know).
Since Qt Creators CMake support is by far not as good as the support for QMake projects, I firgured, using the approach of parsing the .pri files containing the source file list would enable me using QMake and CMake side by side – especially since the remaining project settings are rather less complicated than on most open source projects.
There's a nice trick which does exactly what you need. It's based on the idea I found in the git-revision module of #rpavlik see this so question
This is the overall idea:
Create a dummy timestamp file
Add a custom command which touches the timestamp whenever the input .pri file changes
include the timestamp file in your CMakeLists.txt
A possible implementation:
set(input_pri_file <path-to-the-input-pri-file>)
set(timestamp_file ${CMAKE_CURRENT_BINARY_DIR}/timestamp.cmake)
add_custom_command(
OUTPUT ${timestamp_file}
COMMAND ${CMAKE_COMMAND} -E touch ${timestamp_file}
MAIN_DEPENDENCY ${input_pri_file}
VERBATIM
COMMENT "Updating timestamp.cmake"
)
if(NOT EXISTS "${timestamp_file}")
file(WRITE ${timestamp_file} "") # create initial empty file
endif()
include(${timestamp_file})
# create the file list from input_pri_file
....
# use the file list
add_executable(main ${filelist})
Here's what happens when the .pri file changes:
the change triggers the execution of the custom command
which updates the timestamp
because the CMakeLists includes the timestamp it is dependent on it
so updating the timestamp triggers a re-configuration of the CMakeLists.txt
I use the configure_file() if I have some input that should retrigger CMake's configuration process. See e.g. How to make CMake reconfiguration depend on custom file? and configure_file()'s unit test
So in your case it would look something like:
configure_file(SomeInput.pri ${CMAKE_CURRENT_BINARY_DIR}/SomeInput.pri)
Then you use ${CMAKE_CURRENT_BINARY_DIR}/SomeInput.pri to generate the sources. Just make sure you do not add COPYONLY, because then configuration won't retrigger on changes of SomeInput.pri.
EDIT: Alternatively use - a relative new addition - the CMAKE_CONFIGURE_DEPENDS directory property.

Is it possible to add a whole directory of source files to CMake command add_executable?

The documentation of CMake's add_executable gives the following specification of the command:
add_executable(<name> [WIN32] [MACOSX_BUNDLE]
[EXCLUDE_FROM_ALL]
source1 [source2 ...])
I now have a rather large project with a lot of sources and was wondering if it is possible to add a directory as a parameter for add_executable instead of specifying each source file individually? If not, are there any best practices or recommendations on how to approach this situation? I can't imagine the only way this would work is by adding each source file individually? How would this work for (really) large projects then, this doesn't seem like an elegant approach...
The best practice is indeed to list all files manually.
In particular, the CMake docs warn about using GLOB for this purpose:
We do not recommend using GLOB to collect a list of source files from
your source tree. If no CMakeLists.txt file changes when a source is
added or removed then the generated build system cannot know when to
ask CMake to regenerate.
This point is somewhat controversial, as many developers prefer that the build system just adjusts automatically to newly added files. The price for this automation is an increase in fragility of the build scripts.
You will have to remember to manually re-run CMake whenever files were added or removed. You also have to ensure that the physical layout of the files on disk matches the logical layout of the projects that you want to build. The latter point is arguably the bigger problem here. By decoupling the build system from the files on disk you add an additional safety net, but you have to pay for it with increased build script maintenance costs.
The biggest disadvantage of the explicit approach is imho that if you forget to add a new file to the CMakeLists, you might be wondering over weird linker errors for a while before realizing your mistake. I personally find the maintenance overhead for this approach acceptable. Sure, you will have a lengthy filelist in your build script, but you do not have to touch it that often and the changes will usually be trivial.
Since this point is somewhat controversial, I won't blame you if you want to use a GLOB for your project. Just be aware of the consequences and be prepared that all the cool kids will laugh at you if your build breaks one day because of this.