For shipping logs from app server, which to use Logstash forwarder, FLume or Fluentd? - apache

Logstash forwarder is light, but from logstash forwarder to logstash , there is latency over the network. [ if i am using Logstash forwarder on one machine and sending logs to Logstash which is on other machine ]
Flume /Flume-ng : CPU utilisation is high for same amount of data (for example for 2 MB ,its like 20 percent )
Fluentd : doestn't use java, its based on CRuby , but its CPU utilisation is also at peak time 30 percent, .
As per our use case we do not want to add significant load on my production boxes to just forward the log and if i use logstash i will be introducing new single point of failure so i am pretty confused to choose one among them.

Interesting performance statistics.
From my experience, logstash-forwarder is fairly light weight and encryption/compression is very helpful. This indeed might cause some latency. Is that an important factor for you? I guess latency is smaller than 2-3 seconds. I think that in many log management use cases, real-time is not a strong requirement.
At the end of the day, all these agents need to collect data from apps/files, package them and ship them over the network. This takes some cycles but in most cases, these are 2%-4% of the resources a normal server would have.
Have a look at rsyslog which has many configurations on how often it piggy backs logs. You can run it in a docker and limit resources more strictly on rsyslog or on any of the other agents (https://hub.docker.com/r/logzio/logzio-rsyslog-shipper/)
Another option would be to post logs directly from your app server with bulk HTTP post by writing your own code. It's something most open source like ELK can ingest and it something we recommend using at http://logz.io

Related

Redis Streams vs Kafka Streams/NATS

Redis team introduce new Streams data type for Redis 5.0. Since Streams looks like Kafka topics from first view it seems difficult to find real world examples for using it.
In streams intro we have comparison with Kafka streams:
Runtime consumer groups handling. For example, if one of three consumers fails permanently, Redis will continue to serve first and second because now we would have just two logical partitions (consumers).
Redis streams much faster. They stored and operated from memory so this one is as is case.
We have some project with Kafka, RabbitMq and NATS. Now we are deep look into Redis stream to trying using it as "pre kafka cache" and in some case as Kafka/NATS alternative. The most critical point right now is replication:
Store all data in memory with AOF replication.
By default the asynchronous replication will not guarantee that XADD commands or consumer groups state changes are replicated: after a failover something can be missing depending on the ability of followers to receive the data from the master. This one looks like point to kill any interest to try streams in high load.
Redis failover process as operated by Sentinel or Redis Cluster performs only a best effort check to failover to the follower which is the most updated, and under certain specific failures may promote a follower that lacks some data.
And the cap strategy. The real "capped resource" with Redis Streams is memory, so it's not really so important how many items you want to store or which capped strategy you are using. So each time you consumer fails you would get peak memory consumption or message lost with cap.
We use Kafka as RTB bidder frontend which handle ~1,100,000 messages per second with ~120 bytes payload. With Redis we have ~170 mb/sec memory consumption on write and with 512 gb RAM server we have write "reserve" for ~50 minutes of data. So if processing system would be offline for this time we would crash.
Could you please tell more about Redis Streams usage in real world and may be some cases you try to use it themself? Or may be Redis Streams could be used with not big amount of data?
long time no see. This feels like a discussion that belongs in the redis-db mailing list, but the use case sounds fascinating.
Note that Redis Streams are not intended to be a Kafka replacement - they provide different properties and capabilities despite the similarities. You are of course correct with regards to the asynchronous nature of replication. As for scaling the amount of RAM available, you should consider using a cluster and partition your streams across period-based key names.

RabbitMQ delayed exchange plugin loads and resources

We are using rabbitmq (3.6.6) to send analysis (millions) to different analyzers. These are very quick and we were planning on use the rabbit-message-plugin to schedule monitorizations over the analyzed elements.
We were thinking about rabbitmq-delayed-exchange-plugin, already made some tests and we need some clarification.
Currently:
We are scheduling millions of messages
Delays range from a few minutes to 24 hours
As previously said, these are tests, so we are using a machine with one core and 4G of RAM which has also other apps running on it.
What happened with a high memory watermark set up at 2.0G:
RabbitMQ eventually (a day or so) starts consuming 100% (only one core) and does not respond to the management interface nor rabbitmqctl. This goes on for at least 18 hours (always end up killing, deleting mnesia delayed file on disk - about 100 / 200 MB - and restarting).
What happened with a high memory watermark set up at 3.6G:
RabbitMQ was killed by kernel, because of high memory usage (4 GB hardware) about a week after working like this.
Mnesia file for delayed exchange is about 1.5G
RabbitMQ cannot start anymore giving to the below trace (we are assuming that because of being terminated by a KILL messages in the delay somehow ended up corrupted or something
{could_not_start,rabbit,
rabbitmq-server[12889]: {{case_clause,{timeout,['rabbit_delayed_messagerabbit#rabbitNode']}},
rabbitmq-server[12889]: [{rabbit_boot_steps,'-run_step/2-lc$^1/1-1-',1,
And right now we are asking ourselves: Are we a little over our heads using rabbit delayed exchange plugin for this volumes of information? If we are, then end of the problem, rethink and restart, but if not, what could be an appropiate hardware and/or configuration setup?
RabbitMQ delayed exchange plugin is not properly designed to store millions of messages.
It is also documented to the plugin page
Current design of this plugin doesn't really fit scenarios with a high
number of delayed messages (e.g. 100s of thousands or millions). See
72 for details.
Read also here: https://github.com/rabbitmq/rabbitmq-delayed-message-exchange/issues/72
This plugin is often used as if RabbitMQ was a database. It is not.

What is the point of REDIS in ELK stack?

I currently have architecture with filebeat as the log shipper, which sends logs to log stash indexer instance and then to managed elastic search in AWS. Due to persistent TCP connections, I cannot load balance using AWS ELB multiple log stash indexer instances since filebeats always picks on of the instances and sends it there. So I decided to use redis. Now seeing how difficult it is to scale redis and make it highly available compontent in ELK stack I want to ask what is even the point of redis. I read a million times it acts as a buffer, but if filebeats stops sending logs to logstash if logstash can't handle the load, why do we even need a buffer. Filebeat is smart enough to know to stop sending logs. Logstash is smart enough to stop sending logs to elastic search if elastic search goes down. So the pipeline stops. I really don't understand of the redis acting as a buffer in every standard ELK architecture.
Redis or Kafka or XYZ can be used as buffer in the ELK stack as you've rightly noticed.
The ES folks published a blog post yesterday about using Kafka in the pipeline, but it could as well have been Redis or XYZ. They make a good point about WHEN such a buffer could be needed and when it is not.
It is a good idea to have such a buffer in order to
handle event spikes
deal with a potentially unreachable ES cluster
If you don't anticipate such behaviors, i.e. you know
your events will always come at the same rate and/or
you're ok with your logs being shipped a bit later in case you need to upgrade your ES cluster
...then you don't need such a buffer. What's more, that will be one less piece of software you need to manage, monitor and maintain.
When it comes to the Elastic Stack ecosystem, there's no one-size-fits-all approach, it always depends on your precise use case and requirements. You need to ask yourself what is important to you, your system(s) and your users and then design your solution accordingly.

scalability of azure cloud queue

In current project we currently use 8 worker role machines side by side that actually work a little different than azure may expect it.
Short outline of the system:
each worker start up to 8 processes that actually connect to cloud queue and processes messages
each process accesses three different cloud queues for collecting messages for different purposes (delta recognition, backup, metadata)
each message leads to a WCF call to an ERP system to gather information and finally add retreived response in an ReDis cache
this approach has been chosen over many smaller machines due to costs and performance. While 24 one-core machines would perform by 400 calls/s to the ERP system, 8 four-core machines with 8 processes do over 800 calls/s.
Now to the question: when even increasing the count of machines to increase performance to 1200 calls/s, we experienced outages of Cloud Queue. In same moment of time, 80% of the machines' processes don't process messages anymore.
Here we have two problems:
Remote debugging is not possible for these processes, but it was possible to use dile to get some information out.
We use GetMessages method of Cloud Queue to get up to 4 messages from queue. Cloud Queue always answers with 0 messages. Reconnect the cloud queue does not help.
Restarting workers does help, but shortly lead to same problem.
Are we hitting the natural end of scalability of Cloud Queue and should switch to Service Bus?
Update:
I have not been able to fully understand the problem, I described it in the natual borders of Cloud Queue.
To summarize:
Count of TCP connections have been impressive. Actually too impressive (multiple hundreds)
Going back to original memory size let the system operate normally again
In my experience I have been able to get better raw performance out of Azure Cloud Queues than service bus, but Service Bus has better enterprise features (reliable, topics, etc). Azure Cloud Queue should process up to 2K/second per queue.
https://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/
You can also try partitioning to multiple queues if there is some natural partition key.
Make sure that your process don't have some sort of thread deadlock that is the real culprit. You can test this by connecting to the queue when it appears hung and trying to pull messages from the queue. If that works it is your process, not the queue.
Also take a look at this to setup some other monitors:
https://azure.microsoft.com/en-us/documentation/articles/storage-monitor-storage-account/
It took some time to solve this issue:
First a summarization of the usage of the storage account:
We used the blob storage once a day pretty heavily.
The "normal" diagonistics that Azure provides out of the box also used the same storage account.
Some controlling processes used small tables to store and read information once an hour for ca. 20 minutes
There may be up to 800 calls/s that try to increase a number to count calls to an ERP system.
When recognizing that the storage account is put under heavy load we split it up.
Now there are three physical storage accounts heaving 2 queues.
The original one still keeps up to 800/s calls for increasing counters
Diagnositics are still on the original one
Controlling information has been also moved
The system runs now for 2 weeks, working like a charm. There are several things we learned from that:
No, the infrastructure is "not just there" and it doesn't scale endlessly.
Even if we thought we didn't use "that much" summarized we used quite heavily and uncontrolled.
There is no "best practices" anywhere in the net that tells the complete story. Esp. when start working with the storage account a guide from MS would be quite helpful
Exception handling in storage is quite bad. Even if the storage account is overused, I would expect some kind of exception and not just returning zero message without any surrounding information
Read complete story here: natural borders of cloud storage scalability
UPDATE:
The scalability has a lot of influences. You may are interested in Azure Service Bus: Massive count of listeners and senders to be aware of some more pitfalls.

distributed cluster questions about performance

I'm using 6 servers to make a cluster and they are all disk nodes. I use rabbitmq for collecting log file for our website. Now at the peak hour, the publish rate is about 30k message per second. There are 2 main consumers(hdfs and elasticsearch) and each one need to handle all message, so the delivery rate hit about 60k per second.
In my scenario, a single server can hold 10k delivery rate and I use 6 node to load balance the pressure. My solution is that I created 2 queues on each node. Each message is with a random routing-key(something like message.0, message.1, etc) to distribute the pressure to every node.
What confused me is:
All message send to one node. Should I use a HA Proxy to load balance this publish pressure?
Is there any performance difference between Durable Queues and Transient Queues?
Is there any performance difference between Memory Node and Disk Node? What I know is the difference between memory node and disk node is only about the meta data such as queue configuration.
How can I imrove the performance in publish and delivery codes? I've researched and I know several methods:
disable the confirm mechanism(in publish codes?)
enable HiPE(I've done that and it helped a lot)
For example, input is 1w mps(message per second), there are two consumers to consume all message. Then the output is 2w mps. If my server can handle 1w mps, I need two server to handle the 2w-mps-pressure. Now a new consumer need to consume all message, too. As a result, output hits 3w mps, so I need another one more server. For a conclusion, one more consumer for all message, one more server?
"All message send to one node. Should I use a HA Proxy to load balance this publish pressure?"
This article outlines a number of designs aimed at distributing load in RabbitMQ.
"Is there any performance difference between Durable Queues and Transient Queues?"
Yes, Durable Queues are backed up to disk so that they can be reinstated on server-restart, for example. This adds a nominal overhead, though the actual process occurs asynchronously.
"Is there any performance difference between Memory Node and Disk Node?"
Not that I'm aware of, but that would depend on the machine itself.
"How can I imrove the performance in publish and delivery codes?"
Try this out.