Convert Notes to Hertz (iOS) - objective-c

I have tried to write a function that takes in notes in MIDI form (C2,A4,Bb6) and returns their respective frequencies in hertz. I'm not sure what the best method of doing this should be. I am torn between two approaches. 1) a list based one where I can switch on an input and return hard-coded frequency values given that I may only have to do this for 88 notes (in the grand piano case). 2) a simple mathematical approach however my math skills are a limitation as well as converting the input string into a numerical value. Ultimately I've been working on this for a while and could use some direction.

You can use a function based on this formula:
The basic formula for the frequencies of the notes of the equal
tempered scale is given by
fn = f0 * (a)n
where
f0 = the frequency of one fixed note which must be defined. A common choice is setting the A above middle C (A4) at f0 = 440 Hz.
n = the number of half steps away from the fixed note you are. If you are at a higher note, n is positive. If you are on a lower note, n is negative.
fn = the frequency of the note n half steps away. a = (2)1/12 = the twelth root of 2 = the number which when multiplied by itself 12 times equals 2 = 1.059463094359...
http://www.phy.mtu.edu/~suits/NoteFreqCalcs.html
In Objective-C, this would be:
+ (double)frequencyForNote:(Note)note withModifier:(Modifier)modifier inOctave:(int)octave {
int halfStepsFromA4 = note - A;
halfStepsFromA4 += 12 * (octave - 4);
halfStepsFromA4 += modifier;
double frequencyOfA4 = 440.0;
double a = 1.059463094359;
return frequencyOfA4 * pow(a, halfStepsFromA4);
}
With the following enums defined:
typedef enum : int {
C = 0,
D = 2,
E = 4,
F = 5,
G = 7,
A = 9,
B = 11,
} Note;
typedef enum : int {
None = 0,
Sharp = 1,
Flat = -1,
} Modifier;
https://gist.github.com/NickEntin/32c37e3d31724b229696

Why don't you use a MIDI pitch?
where f is the frequency, and d the MIDI data.

Related

How to fix "submatrix incorrectly defined" in Scilab?

I am trying to find three parameters (a, b, c) to fit my experimental data using ODE solver and optimization by least squares using Scilab in-built functions.
However, I keep having the message "submatrix incorrectly defined" at line "y_exp(:,1) = [0.135 ..."
When I try another series of data (t, yexp) such as the one used in the original template I get no error messages. The template I use was found here: https://wiki.scilab.org/Non%20linear%20optimization%20for%20parameter%20fitting%20example
function dy = myModel ( t , y , a , b, c )
// The right-hand side of the Ordinary Differential Equation.
dy(1) = -a*y(1) - b*y(1)*y(2)
dy(2) = a*y(1) - b*y(1)*y(2) - c*y(2)
endfunction
function f = myDifferences ( k )
// Returns the difference between the simulated differential
// equation and the experimental data.
global MYDATA
t = MYDATA.t
y_exp = MYDATA.y_exp
a = k(1)
b = k(2)
c = k(3)
y0 = y_exp(1,:)
t0 = 0
y_calc=ode(y0',t0,t,list(myModel,a,b,c))
diffmat = y_calc' - y_exp
// Make a column vector
f = diffmat(:)
MYDATA.funeval = MYDATA.funeval+ 1
endfunction
// Experimental data
t = [0,20,30,45,75,105,135,180,240]';
y_exp(:,1) =
[0.135,0.0924,0.067,0.0527,0.0363,0.02445,0.01668,0.012,0.009]';
y_exp(:,2) =
[0,0.00918,0.0132,0.01835,0.0261,0.03215,0.0366,0.0393,0.0401]';
// Store data for future use
global MYDATA;
MYDATA.t = t;
MYDATA.y_exp = y_exp;
MYDATA.funeval = 0;
function val = L_Squares ( k )
// Computes the sum of squares of the differences.
f = myDifferences ( k )
val = sum(f.^2)
endfunction
// Initial guess
a = 0;
b = 0;
c = 0;
x0 = [a;b;c];
[fopt ,xopt]=leastsq(myDifferences, x0)
Does anyone know how to approach this problem?
Just rewrite lines 28,29 as
y_exp = [0.135,0.0924,0.067,0.0527,0.0363,0.02445,0.01668,0.012,0.009
0,0.00918,0.0132,0.01835,0.0261,0.03215,0.0366,0.0393,0.0401]';
or insert a clear at line 1 (you may have defined y_exp before with a different size).

Different FFT results from Matlab fft and Objective-c fft

Here is my code in matlab:
x = [1 2 3 4];
result = fft(x);
a = real(result);
b = imag(result);
Result from matlab:
a = [10,-2,-2,-2]
b = [ 0, 2, 0,-2]
And my runnable code in objective-c:
int length = 4;
float* x = (float *)malloc(sizeof(float) * length);
x[0] = 1;
x[1] = 2;
x[2] = 3;
x[3] = 4;
// Setup the length
vDSP_Length log2n = log2f(length);
// Calculate the weights array. This is a one-off operation.
FFTSetup fftSetup = vDSP_create_fftsetup(log2n, FFT_RADIX2);
// For an FFT, numSamples must be a power of 2, i.e. is always even
int nOver2 = length/2;
// Define complex buffer
COMPLEX_SPLIT A;
A.realp = (float *) malloc(nOver2*sizeof(float));
A.imagp = (float *) malloc(nOver2*sizeof(float));
// Generate a split complex vector from the sample data
vDSP_ctoz((COMPLEX*)x, 2, &A, 1, nOver2);
// Perform a forward FFT using fftSetup and A
vDSP_fft_zrip(fftSetup, &A, 1, log2n, FFT_FORWARD);
//Take the fft and scale appropriately
Float32 mFFTNormFactor = 0.5;
vDSP_vsmul(A.realp, 1, &mFFTNormFactor, A.realp, 1, nOver2);
vDSP_vsmul(A.imagp, 1, &mFFTNormFactor, A.imagp, 1, nOver2);
printf("After FFT: \n");
printf("%.2f | %.2f \n",A.realp[0], 0.0);
for (int i = 1; i< nOver2; i++) {
printf("%.2f | %.2f \n",A.realp[i], A.imagp[i]);
}
printf("%.2f | %.2f \n",A.imagp[0], 0.0);
The output from objective c:
After FFT:
10.0 | 0.0
-2.0 | 2.0
The results are so close. I wonder where is the rest ? I know missed something but don't know what is it.
Updated: I found another answer here . I updated the output
After FFT:
10.0 | 0.0
-2.0 | 2.0
-2.0 | 0.0
but even that there's still 1 element missing -2.0 | -2.0
Performing a FFT delivers a right hand spectrum and a left hand spectrum.
If you have N samples the frequencies you will return are:
( -f(N/2), -f(N/2-1), ... -f(1), f(0), f(1), f(2), ..., f(N/2-1) )
If A(f(i)) is the complex amplitude A of the frequency component f(i) the following relation is true:
Real{A(f(i)} = Real{A(-f(i))} and Imag{A(f(i)} = -Imag{A(-f(i))}
This means, the information of the right hand spectrum and the left hand spectrum is the same. However, the sign of the imaginary part is different.
Matlab returns the frequency in a different order.
Matlab order is:
( f(0), f(1), f(2), ..., f(N/2-1) -f(N/2), -f(N/2-1), ... -f(1), )
To get the upper order use the Matlab function fftshift().
In the case of 4 Samples you have got in Matlab:
a = [10,-2,-2,-2]
b = [ 0, 2, 0,-2]
This means:
A(f(0)) = 10 (DC value)
A(f(1)) = -2 + 2i (first frequency component of the right hand spectrum)
A(-f(2) = -2 ( second frequency component of the left hand spectrum)
A(-f(1) = -2 - 2i ( first frequency component of the left hand spectrum)
I do not understand your objective-C code.
However, it seems to me that the program returns the right hand spectrum only.
So anything is perfect.

Binary Search, when should I increment high or low?

I am having difficult to understand how to increment low or high.
For instance, this is a question from leetcode:
Implement int sqrt(int x).
My code:
class Solution {
public:
int mySqrt(int x) {
if (x<=0) return 0;
int low=1, high=x, mid=0;
while (low<=high){ // should I do low<high?
mid=low+(high-low)/2;
if (x/mid==mid) return mid;
if (x/mid>mid) low= mid+1; //can I just do low=mid?
else high=mid-1; // can I do high =mid?
}
return high; //after breaking the loop, should I return high or low?
}
};
You see, after a condition is fufill, I don't know whether I should set low=mid OR low=mid+1. Why mid+1?
In general, I am having trouble to see whether I should increment low from mid point or not. I am also having trouble when should I include low <= high or low < high in the while loop.
Your algo is not binary search.
Also, it doesn't work.
Take example x = 5
Initial:
low = 1, high = 5
Iter 1:
mid = 3
5/3 = 1 so high = 4
Iter 2:
mid = 2.5 => 2 (because int)
5/2 = 2 (because int)
<returns 2>
For perfect square inputs, your algo will give correct results only through mid not high or low.
BTW you need to increase mid if x/mid > mid and you need to decrease it otherwise. Your method of increasing and decreasing mid is incrementing low, or decrementing high respectively.
This is OK, but this doesn't yield a binary search. Your high would be walking through all the integers from x to (2*sqrt - 1).
Please follow #sinsuren comment to a far better solution
This is Babylonian method for square root:
/*Returns the square root of n.*/
float squareRoot(float n)
{
/*We are using n itself as initial approximation
This can definitely be improved */
float x = n;
float y = 1;
float e = 0.000001; /* e decides the accuracy level*/
while(x - y > e)
{
x = (x + y)/2;
y = n/x;
}
return x;
}
For more understanding you can always follow this link

Check if a number is divisible by 3

I need to find whether a number is divisible by 3 without using %, / or *. The hint given was to use atoi() function. Any idea how to do it?
The current answers all focus on decimal digits, when applying the "add all digits and see if that divides by 3". That trick actually works in hex as well; e.g. 0x12 can be divided by 3 because 0x1 + 0x2 = 0x3. And "converting" to hex is a lot easier than converting to decimal.
Pseudo-code:
int reduce(int i) {
if (i > 0x10)
return reduce((i >> 4) + (i & 0x0F)); // Reduces 0x102 to 0x12 to 0x3.
else
return i; // Done.
}
bool isDiv3(int i) {
i = reduce(i);
return i==0 || i==3 || i==6 || i==9 || i==0xC || i == 0xF;
}
[edit]
Inspired by R, a faster version (O log log N):
int reduce(unsigned i) {
if (i >= 6)
return reduce((i >> 2) + (i & 0x03));
else
return i; // Done.
}
bool isDiv3(unsigned i) {
// Do a few big shifts first before recursing.
i = (i >> 16) + (i & 0xFFFF);
i = (i >> 8) + (i & 0xFF);
i = (i >> 4) + (i & 0xF);
// Because of additive overflow, it's possible that i > 0x10 here. No big deal.
i = reduce(i);
return i==0 || i==3;
}
Subtract 3 until you either
a) hit 0 - number was divisible by 3
b) get a number less than 0 - number wasn't divisible
-- edited version to fix noted problems
while n > 0:
n -= 3
while n < 0:
n += 3
return n == 0
Split the number into digits. Add the digits together. Repeat until you have only one digit left. If that digit is 3, 6, or 9, the number is divisible by 3. (And don't forget to handle 0 as a special case).
While the technique of converting to a string and then adding the decimal digits together is elegant, it either requires division or is inefficient in the conversion-to-a-string step. Is there a way to apply the idea directly to a binary number, without first converting to a string of decimal digits?
It turns out, there is:
Given a binary number, the sum of its odd bits minus the sum of its even bits is divisible by 3 iff the original number was divisible by 3.
As an example: take the number 3726, which is divisible by 3. In binary, this is 111010001110. So we take the odd digits, starting from the right and moving left, which are [1, 1, 0, 1, 1, 1]; the sum of these is 5. The even bits are [0, 1, 0, 0, 0, 1]; the sum of these is 2. 5 - 2 = 3, from which we can conclude that the original number is divisible by 3.
A number divisible by 3, iirc has a characteristic that the sum of its digit is divisible by 3. For example,
12 -> 1 + 2 = 3
144 -> 1 + 4 + 4 = 9
The interview question essentially asks you to come up with (or have already known) the divisibility rule shorthand with 3 as the divisor.
One of the divisibility rule for 3 is as follows:
Take any number and add together each digit in the number. Then take that sum and determine if it is divisible by 3 (repeating the same procedure as necessary). If the final number is divisible by 3, then the original number is divisible by 3.
Example:
16,499,205,854,376
=> 1+6+4+9+9+2+0+5+8+5+4+3+7+6 sums to 69
=> 6 + 9 = 15 => 1 + 5 = 6, which is clearly divisible by 3.
See also
Wikipedia/Divisibility rule - has many rules for many divisors
Given a number x.
Convert x to a string. Parse the string character by character. Convert each parsed character to a number (using atoi()) and add up all these numbers into a new number y.
Repeat the process until your final resultant number is one digit long. If that one digit is either 3,6 or 9, the origional number x is divisible by 3.
My solution in Java only works for 32-bit unsigned ints.
static boolean isDivisibleBy3(int n) {
int x = n;
x = (x >>> 16) + (x & 0xffff); // max 0x0001fffe
x = (x >>> 8) + (x & 0x00ff); // max 0x02fd
x = (x >>> 4) + (x & 0x000f); // max 0x003d (for 0x02ef)
x = (x >>> 4) + (x & 0x000f); // max 0x0011 (for 0x002f)
return ((011111111111 >> x) & 1) != 0;
}
It first reduces the number down to a number less than 32. The last step checks for divisibility by shifting the mask the appropriate number of times to the right.
You didn't tag this C, but since you mentioned atoi, I'm going to give a C solution:
int isdiv3(int x)
{
div_t d = div(x, 3);
return !d.rem;
}
bool isDiv3(unsigned int n)
{
unsigned int n_div_3 =
n * (unsigned int) 0xaaaaaaab;
return (n_div_3 < 0x55555556);//<=>n_div_3 <= 0x55555555
/*
because 3 * 0xaaaaaaab == 0x200000001 and
(uint32_t) 0x200000001 == 1
*/
}
bool isDiv5(unsigned int n)
{
unsigned int n_div_5 =
i * (unsigned int) 0xcccccccd;
return (n_div_5 < 0x33333334);//<=>n_div_5 <= 0x33333333
/*
because 5 * 0xcccccccd == 0x4 0000 0001 and
(uint32_t) 0x400000001 == 1
*/
}
Following the same rule, to obtain the result of divisibility test by 'n', we can :
multiply the number by 0x1 0000 0000 - (1/n)*0xFFFFFFFF
compare to (1/n) * 0xFFFFFFFF
The counterpart is that for some values, the test won't be able to return a correct result for all the 32bit numbers you want to test, for example, with divisibility by 7 :
we got 0x100000000- (1/n)*0xFFFFFFFF = 0xDB6DB6DC
and 7 * 0xDB6DB6DC = 0x6 0000 0004,
We will only test one quarter of the values, but we can certainly avoid that with substractions.
Other examples :
11 * 0xE8BA2E8C = A0000 0004, one quarter of the values
17 * 0xF0F0F0F1 = 10 0000 0000 1
comparing to 0xF0F0F0F
Every values !
Etc., we can even test every numbers by combining natural numbers between them.
A number is divisible by 3 if all the digits in the number when added gives a result 3, 6 or 9. For example 3693 is divisible by 3 as 3+6+9+3 = 21 and 2+1=3 and 3 is divisible by 3.
inline bool divisible3(uint32_t x) //inline is not a must, because latest compilers always optimize it as inline.
{
//1431655765 = (2^32 - 1) / 3
//2863311531 = (2^32) - 1431655765
return x * 2863311531u <= 1431655765u;
}
On some compilers this is even faster then regular way: x % 3. Read more here.
well a number is divisible by 3 if all the sum of digits of the number are divisible by 3. so you could get each digit as a substring of the input number and then add them up. you then would repeat this process until there is only a single digit result.
if this is 3, 6 or 9 the number is divisable by 3.
Here is a pseudo-algol i came up with .
Let us follow binary progress of multiples of 3
000 011
000 110
001 001
001 100
001 111
010 010
010 101
011 000
011 011
011 110
100 001
100 100
100 111
101 010
101 101
just have a remark that, for a binary multiple of 3 x=abcdef in following couples abc=(000,011),(001,100),(010,101) cde doest change , hence, my proposed algorithm:
divisible(x):
y = x&7
z = x>>3
if number_of_bits(z)<4
if z=000 or 011 or 110 , return (y==000 or 011 or 110) end
if z=001 or 100 or 111 , return (y==001 or 100 or 111) end
if z=010 or 101 , return (y==010 or 101) end
end
if divisible(z) , return (y==000 or 011 or 110) end
if divisible(z-1) , return (y==001 or 100 or 111) end
if divisible(z-2) , return (y==010 or 101) end
end
C# Solution for checking if a number is divisible by 3
namespace ConsoleApplication1
{
class Program
{
static void Main(string[] args)
{
int num = 33;
bool flag = false;
while (true)
{
num = num - 7;
if (num == 0)
{
flag = true;
break;
}
else if (num < 0)
{
break;
}
else
{
flag = false;
}
}
if (flag)
Console.WriteLine("Divisible by 3");
else
Console.WriteLine("Not Divisible by 3");
Console.ReadLine();
}
}
}
Here is your optimized solution that every one should know.................
Source: http://www.geeksforgeeks.org/archives/511
#include<stdio.h>
int isMultiple(int n)
{
int o_count = 0;
int e_count = 0;
if(n < 0)
n = -n;
if(n == 0)
return 1;
if(n == 1)
return 0;
while(n)
{
if(n & 1)
o_count++;
n = n>>1;
if(n & 1)
e_count++;
n = n>>1;
}
return isMultiple(abs(o_count - e_count));
}
int main()
{
int num = 23;
if (isMultiple(num))
printf("multiple of 3");
else
printf(" not multiple of 3");
return 0;
}

Optimizing Vector elements swaps using CUDA

Since I am new to cuda .. I need your kind help
I have this long vector, for each group of 24 elements, I need to do the following:
for the first 12 elements, the even numbered elements are multiplied by -1,
for the second 12 elements, the odd numbered elements are multiplied by -1 then the following swap takes place:
Graph: because I don't yet have enough points, I couldn't post the image so here it is:
http://www.freeimagehosting.net/image.php?e4b88fb666.png
I have written this piece of code, and wonder if you could help me further optimize it to solve for divergence or bank conflicts ..
//subvector is a multiple of 24, Mds and Nds are shared memory
____shared____ double Mds[subVector];
____shared____ double Nds[subVector];
int tx = threadIdx.x;
int tx_mod = tx ^ 0x0001;
int basex = __umul24(blockDim.x, blockIdx.x);
Mds[tx] = M.elements[basex + tx];
__syncthreads();
// flip the signs
if (tx < (tx/24)*24 + 12)
{
//if < 12 and even
if ((tx & 0x0001)==0)
Mds[tx] = -Mds[tx];
}
else
if (tx < (tx/24)*24 + 24)
{
//if >12 and < 24 and odd
if ((tx & 0x0001)==1)
Mds[tx] = -Mds[tx];
}
__syncthreads();
if (tx < (tx/24)*24 + 6)
{
//for the first 6 elements .. swap with last six in the 24elements group (see graph)
Nds[tx] = Mds[tx_mod + 18];
Mds [tx_mod + 18] = Mds [tx];
Mds[tx] = Nds[tx];
}
else
if (tx < (tx/24)*24 + 12)
{
// for the second 6 elements .. swp with next adjacent group (see graph)
Nds[tx] = Mds[tx_mod + 6];
Mds [tx_mod + 6] = Mds [tx];
Mds[tx] = Nds[tx];
}
__syncthreads();
Thanks in advance ..
paul gave you pretty good starting points you previous questions.
couple things to watch out for: you are doing non-base 2 division which is expensive.
Instead try to utilize multidimensional nature of the thread block. For example, make the x-dimension of size 24, which will eliminate need for division.
in general, try to fit thread block dimensions to reflect your data dimensions.
simplify sign flipping: for example, if you do not want to flip sign, you can still multiplied by identity 1. Figure out how to map even/odd numbers to 1 and -1 using just arithmetic: for example sign = (even*2+1) - 2 where even is either 1 or 0.