RenderScript Variable types and Element types, simple example - variables

I clearly see the need to deepen my knowledge in RenderScript memory allocation and data types (I'm still confused about the sheer number of data types and finding the correct corresponding types on either side - allocations and elements. (or when to refer the forEach to input, to output or to both, etc.) Therefore I will read and re-read the documentation, which is really not bad - but it needs some time to get the necessary "intuition" how to use it correctly. But for now, please help me with this basic one (and I will return later with hopefully less stupid questions...). I need a very simple kernel that takes an ARGB Color Bitmap and returns an integer Array of gray-values. My attempt was the following:
#pragma version(1)
#pragma rs java_package_name(com.example.xxxx)
#pragma rs_fp_relaxed
uint __attribute__((kernel)) grauInt(uchar4 in) {
uint gr= (uint) (0.2125*in.r + 0.7154*in.g + 0.0721*in.b);
return gr;
}
and Java side:
int[] data1 = new int[width*height];
ScriptC_gray graysc;
graysc=new ScriptC_gray(rs);
Type.Builder TypeOut = new Type.Builder(rs, Element.U8(rs));
TypeOut.setX(width).setY(height);
Allocation outAlloc = Allocation.createTyped(rs, TypeOut.create());
Allocation inAlloc = Allocation.createFromBitmap(rs, bmpfoto1,
Allocation.MipmapControl.MIPMAP_NONE, Allocation.USAGE_SCRIPT);
graysc.forEach_grauInt(inAlloc, outAlloc);
outAlloc.copyTo(data1);
This crashed with the message cannot locate symbol "convert_uint". What's wrong with this conversion? Is the code otherwise correct?
UPDATE: isn't that ridiculous? I don't get this "easy one" run, even after 2 hours trying. I still struggle with the different Element- and variable-types. Let's recap: Input is a Bitmap. Output is an int[] Array. So, why doesnt it work when I use U8 in the Java-side Out-allocation, createFromBitmap in the Java-side In-allocation, uchar4 as kernel Input and uint as the kernel Output (RSRuntimeException: Type mismatch with U32) ?

There is no convert_uint() function. How about simple casting? Other than that, the code looks alright (assuming width and height have correct values).
UPDATE: I have just noticed that you allocate Element.I32 (i.e. signed integer type), but return uint from the kernel. These should match. And in any case, unless you need more than 8-bit precision, you should be able to fit your result in U8.
UPDATE: If you are changing the output type, make sure you change it in all places, e.g. if the kernel returns an uint, the allocation should use U32. If the kernel returns a char, the allocation should use I8. And so on...

You can't use a Uint[] directly because the input Bitmap is actually 2-dimensional. Can you create the output Allocation with a proper width/height and try that? You should still be able to extract the values into a Java array when you are finished.

Related

Hard Fault when dynamic memory allocaion in stm32f7

I am trying to implement a system so that it retrieves sound and extracts the mfcc of it. I'd like to implement my own mfcc function because librosa library wasn't implemented in C and other implementations of mfcc extractions doesn't yield the same outputs as librosa library does.
So I wrote a code, however, when I would like create hanning window, program doesn't take a step further and always stays the same statement while debugging. The statement is below:
float *mul = malloc(sizeof(float)*fftsize);
The whole code is as follows:
float* hanning(int fftsize){
float *mul = malloc(sizeof(float)*fftsize);
for (int i = 0; i<fftsize; i++){
mul[i] = 0.5 * (1 - cos(2*PI*i/(fftsize-1)));
}
return mul;
}
I put an LCD code to all error handler functions in stm32f7xx_it.c file to determine which fault I'm facing, and I see that it is hard_fault.
So what's the problem? I hope the issue is explained clearly. Due to the privacy, I couldn't put here whole code. Sorry for that. Thx in advance for your response.
Edit: I am chaning malloc to normal array with a variable length array. But still it takes me to HardFault_Handler function. SCB->SHCSR returns sometimes 65535 and sometimes 1.

maxDisplays of CGGetDisplaysWithPoint

Definition:
As defined here, CGGetDisplaysWithPoint takes 4 parameters:
A CGPoint object
An int32 representing the maximum number of displays returned
A mutable array passed by reference, which will be filled with the displayIDs found.
An int32 representing the matching display count
Syntax:
CGError CGGetDisplaysWithPoint(CGPoint point, uint32_t maxDisplays, CGDirectDisplayID *displays, uint32_t *matchingDisplayCount);
This is fine and I can get this function working however I am quite confused as to how I should deal with the maxDisplays parameter?
As I understand it, if I set maxDisplays to 5 then if someone has 6 displays, there is a 1/6 chance that a randomly selected pixel will find no displays?
So do we just set maxDisplays to something unrealistic, like 99, and release the array afterwards? What's the point in this argument?
The point of the argument is to prevent the function from writing past the end of your array. You have to tell it the capacity of the array. Note that the displays parameter is neither a Cocoa nor Core Foundation mutable array object. It's a C-style array. It's "mutable" in the sense that it's not "const", but it's not an object that manages its own storage. You are responsible for managing that storage and must communicate its capacity to any function that is intended to store data in it (or otherwise guarantee that such function won't overrun it).
So, your question should really be how to decide on the capacity of the array. There are two basic approaches:
1) Call the function passing NULL for the displays parameter and any arbitrary value (best to use 0) for maxDisplays. As documented, when displays is NULL, maxDisplays is ignored and the function outputs via matchingDisplayCount the number of displays whose bounds contain the given point. Then, allocate an array with (at least) that many elements to use to receive the display IDs and call the function again, passing that array for displays and its capacity for maxDisplays.
2) Use an array with capacity of 32. It's not explicitly documented but it's implicit in the API that that's the maximum number of supported displays. A display ID can be converted to an OpenGL display mask using CGDisplayIDToOpenGLDisplayMask(). The type CGOpenGLDisplayMask is used to hold OpenGL display masks. It is defined as uint32_t, a 32-bit value. Therefore, there can be at most 32 active displays.
This technique is used in some Apple docs, like here, here, here, and here. That last one even makes a direct connection between the number of bits in CGOpenGLDisplayMask and the maximum number of displays.

Variable sized arrays in Objective-C?

Okay, so apparently this works:
void foo(size_t s) {
int myArray[s];
// ... use myArray...
}
Is this really legal? I mean, it must be, because it compiles (where the C compiler would reject it as non-constant). The first part of my question is: how does this work? I assume it's allocating it on the stack? Is this different from using alloca()?
Practically, I found some code that does this:
void bar(size_t chunkSize) {
CFReadStreamRef foo = NULL;
// ...some stuff to init foo...
while (stuffToDo) {
UInt8 buffer[chunkSize];
// ...read some data from stream into buffer
// using CFReadStreamRead()...
}
}
This works. However, when I move the buffer allocation from inside the loop to the first line of the function (directly before foo is declared), the function... stops working. In the debugger it gets to the first access of local variables and then just... exits. I don't see any exceptions being thrown, it doesn't crash, it just program carries on running (in reality the function returns a string and that return value is NULL, which is what the return variable is initialized to). I'm not sure what's going on. The second part of my questions is, in light of the first part, what the heck is going on?
it is legal in C99, although dangerous, and yes -- it is like alloca.
because it's like alloca, you want reasonably sized arrays when allocating on the stack. i am not sure if this is defined if the length is zero, but you could definitely cause a stack overflow if the array is 'large enough' to do so.
as far as what is going on -- pulling it out of the loop should make no difference if the sizes are reasonable. i suspect you are seeing undefined behavior because a parameter value is too large (or perhaps 0) -- you should validate the chunkSize parameter. the assembly will tell you why pulling it out of the loop makes a difference (assuming everything else in the program is well-formed).

Create Managed Array with long/size_t length

Jumping straight to code, this is what I would like to do:
size_t len = obj->someLengthFunctionThatReturnsTypeSizeT();
array<int>^ a = gcnew array<int>(len);
When I try this, I get the error
conversion from size_t to int, possible loss of data
Is there a way I can get this code to compile without explicitly casting to int? I find it odd that I can't initialize an array to this size, especially because there is a LongLength property (and how could you get a length as a long - bigger than int - if you can only initialize a length as an int?).
Thanks!
P.S.: I did find this article that says that it may be impractical to allocate an array that is truly size_t, but I don't think that is a concern. The point is that the length I would like to initialize to is stored in a size_t variable.
Managed arrays are implemented for using Int32 as indices, there is no way around that. You cannot allocate arrays larger than Int32.MaxValue.
You could use the static method Array::CreateInstance (the overload that takes a Type and an array of Int64), and then cast the resulting System::Array to the appropriate actual array type (e.g. array<int>^). Note that the passed values must not be larger than Int32.MaxValue. And you would still need to cast.
So you have at least two options. Either casting:
// Would truncate the value if it is too large
array<int>^ a = gcnew array<int>((int)len);
or this (no need to cast len, but the result of CreateInstance):
// Throws an ArgumentOutOfRangeException if len is too large
array<int>^ a = (array<int>^)Array::CreateInstance(int::typeid, len);
Personally, i find the first better. You still might want to check the actual size of len so that you don't run into any of the mentioned errors.

passing primitive or struct type as function argument

I'm trying to write some reasonably generic networking code. I have several kinds of packets, each represented by a different struct. The function where all my sending occurs looks like:
- (void)sendUpdatePacket:(MyPacketType)packet{
for(NSNetService *service in _services)
for(NSData *address in [service addresses])
sendto(_socket, &packet, sizeof(packet), 0, [address bytes], [address length]);
}
I would really like to be able to send this function ANY kind of packet, not just MyPacketType packets.
I thought maybe if the function def was:
- (void)sendUpdatePacket:(void*)packetRef
I could pass in anykind of pointer to packet. But, without knowing the type of packet, I can't dereference the pointer.
How do I write a function to accept any kind of primitive/struct as its argument?
What you are trying to achieve is polymorphism, which is an OO concept.
So while this would be quite easy to implement in C++ (or other OO languages), it's a bit more challenging in C.
One way you could get around is it to create a generic "packet" structure such as this:
typedef struct {
void* messageHandler;
int messageLength;
int* messageData;
} packet;
Where the messageHandler member is a function pointer to a callback routine which can process the message type, and the messageLength and messageData members are fairly self-explanatory.
The idea is that the method which you pass the packetStruct to would use the Tell, Don't Ask principle to invoke the specific message handler pointer to by messageHandler, passing in the messageLength and messageData without interpreting it.
The dispatch function (pointed to by messageHandler) would be message-specific and will be able to cast the messageData to the appropriate meaningful type, and then the meaningful fields can be extracted from it and processed, etc.
Of course, this is all much easier and more elegant in C++ with inheritance, virtual methods and the like.
Edit:
In response to the comment:
I'm a little unclear how "able to cast
the messageData to the appropriate
meaningful type, and then the
meaningful fields can be extracted
from it and processed, etc." would be
accomplished.
You would implement a handler for a specific message type, and set the messageHandler member to be a function pointer to this handler. For example:
void messageAlphaHandler(int messageLength, int* messageData)
{
MessageAlpha* myMessage = (MessageAlpha*)messageData;
// Can now use MessageAlpha members...
int messageField = myMessage->field1;
// etc...
}
You would define messageAlphaHandler() in such a way to allow any class to get a function pointer to it easily. You could do this on startup of the application so that the message handlers are registered from the beginning.
Note that for this system to work, all message handlers would need to share the same function signature (i.e. return type and parameters).
Or for that matter, how messageData
would be created in the first place
from my struct.
How are you getting you packet data? Are you creating it manually, reading it off a socket? Either way, you need to encode it somewhere as a string of bytes. The int* member (messageData) is merely a pointer to the start of the encoded data. The messageLength member is the length of this encoded data.
In your message handler callback, you don't want probably don't want to continue to manipulate the data as raw binary/hex data, but instead interpret the information in a meaningful fashion according to the message type.
Casting it to a struct essentially maps the raw binary information on to a meaningful set of attributes matching to the protocol of the message you are processing.
The key is that you must realize that everything in a computer is just an array of bytes (or, words, or double words).
ZEN MASTER MUSTARD is sitting at his desk staring at his monitor staring at a complex pattern of seemingly random characters. A STUDENT approaches.
Student: Master? May I interrupt?
Zen Master Mustard: You have answered your own inquiry, my son.
S: What?
ZMM: By asking your question about interrupting me, you have interrupted me.
S: Oh, sorry. I have a question about moving structures of varying size from place to place.
ZMM: If that it true, then you should consult a master who excels at such things. I suggest, you pay a visit to Master DotPuft, who has great knowledge in moving large metal structures, such as tracking radars, from place to place. Master DotPuft can also cause the slightest elements of a feather-weight strain gage to move with the force of a dove's breath. Turn right, then turn left when you reach the door of the hi-bay. There dwells Master DotPuft.
S: No, I mean moving large structures of varying sizes from place to place in the memory of a computer.
ZMM: I may assist you in that endeavor, if you wish. Describe your problem.
S: Specifically, I have a c function that I want to accept several different types of structs (they will be representing different type of packets). So my struct packets will be passed to my function as void*. But without knowing the type, I can't cast them, or really do much of anything. I know this is a solvable problem, because sento() from socket.h does exactly that:
ssize_t sendto(int socket, const void *message, size_t length, int flags, const struct sockaddr *dest_addr,socklen_t dest_len);
where sendto would be called like:
sendto(socketAddress, &myPacket, sizeof(myPacket), Other args....);
ZMM: Did you describe your problem to Zen Master MANTAR! ?
S: Yeah, he said, "It's just a pointer. Everything in C is a pointer." When I asked him to explain, he said, "Bok, bok, get the hell out of my office."
ZMM: Truly, you have spoken to the master. Did this not help you?
S: Um, er, no. Then I asked Zen Master Max.
ZMM: Wise is he. What was his advice to you useful?
S: No. When I asked him about sendto(), he just swirled his fists in the air. It's just an array of bytes."
ZMM: Indeed, Zen Master Max has tau.
S: Yeah, he has tau, but how do I deal with function arguments of type void*?
ZMM: To learn, you must first unlearn. The key is that you must realize that everything in a computer is just an array of bytes (or, words, or double words). Once you have a pointer to the beginning of a buffer, and the length of the buffer, you can sent it anywhere without a need to know the type of data placed in the buffer.
S: OK.
ZMM: Consider a string of man-readable text. "You plan a tower that will pierce the clouds? Lay first the foundation of humility." It is 82 bytes long. Or, perhaps, 164 if the evil Unicode is used. Guard yourself against the lies of Unicode! I can submit this text to sendto() by providing a pointer to the beginning of the buffer that contains the string, and the length of the buffer, like so:
char characterBuffer[300]; // 300 bytes
strcpy(characterBuffer, "You plan a tower that will pierce the clouds? Lay first the foundation of humility.");
// note that sizeof(characterBuffer) evaluates to 300 bytes.
sendto(socketAddress, &characterBuffer, sizeof(characterBuffer));
ZMM: Note well that the number of bytes of the character buffer is automatically calculated by the compiler. The number of bytes occupied by any variable type is of a type called "size_t". It is likely equivalent to the type "long" or "unsinged int", but it is compiler dependent.
S: Well, what if I want to send a struct?
ZMM: Let us send a struct, then.
struct
{
int integerField; // 4 bytes
char characterField[300]; // 300 bytes
float floatField; // 4 bytes
} myStruct;
myStruct.integerField = 8765309;
strcpy(myStruct.characterField, "Jenny, I got your number.");
myStruct.floatField = 876.5309;
// sizeof(myStruct) evaluates to 4 + 300 + 4 = 308 bytes
sendto(socketAddress, &myStruct, sizeof(myStruct);
S: Yeah, that's great at transmitting things over TCP/IP sockets. But what about the poor receiving function? How can it tell if I am sending a character array or a struct?
ZMM: One way is to enumerate the different types of data that may be sent, and then send the type of data along with the data. Zen Masters refer to this as "metadata", that is to say, "data about the data". Your receiving function must examine the metadata to determine what kind of data (struct, float, character array) is being sent, and then use this information to cast the data back into its original type. First, consider the transmitting function:
enum
{
INTEGER_IN_THE_PACKET =0 ,
STRING_IN_THE_PACKET =1,
STRUCT_IN_THE_PACKET=2
} typeBeingSent;
struct
{
typeBeingSent dataType;
char data[4096];
} Packet_struct;
Packet_struct myPacket;
myPacket.dataType = STRING_IN_THE_PACKET;
strcpy(myPacket.data, "Nothing great is ever achieved without much enduring.");
sendto(socketAddress, myPacket, sizeof(Packet_struct);
myPacket.dataType = STRUCT_IN_THE_PACKET;
memcpy(myPacket.data, (void*)&myStruct, sizeof(myStruct);
sendto(socketAddress, myPacket, sizeof(Packet_struct);
S: All right.
ZMM: Now, just us walk along with the receiving function. It must query the type of the data that was sent and the copy the data into a variable declared of that type. Forgive me, but I forget the exact for of the recvfrom() function.
char[300] receivedString;
struct myStruct receivedStruct;
recvfrom(socketDescriptor, myPacket, sizeof(myPacket);
switch(myPacket.dataType)
{
case STRING_IN_THE_PACKET:
// note the cast of the void* data into type "character pointer"
&receivedString[0] = (char*)&myPacket.data;
printf("The string in the packet was \"%s\".\n", receivedString);
break;
case STRUCT_IN_THE_PACKET:
// note the case of the void* into type "pointer to myStruct"
memcpy(receivedStruct, (struct myStruct *)&myPacket.data, sizeof(receivedStruct));
break;
}
ZMM: Have you achieved enlightenment? First, one asks the compiler for the size of the data (a.k.a. the number of bytes) to be submitted to sendto(). You send the type of the original data is sent along as well. The receiver then queries for the type of the original data, and uses it to call the correct cast from "pointer to void" (a generic pointer), over to the type of the original data (int, char[], a struct, etc.)
S: Well, I'll give it a try.
ZMM: Go in peace.