SSAS new measure with a fixed dimension value - ssas

I am trying to create a measure in SSAS 2012 that looks something like that in MDX:
SELECT
{[Measures].[DWH FACT Events Count]} ON COLUMNS
FROM [27BI]
WHERE
[DWH DIM Event Name].[Event Name].&[wizard_done-button_click];
This gives me the result of counting rows (DWH FACT Events Count) when the Event Name is fixated to be "wizard_done-button_click".
I want this measure to update on each slice of the cube (i.e choose a country). While this query works, I don't know how to get it to become an actual measure.
One solution I saw was to create a Calculation:
CREATE MEMBER CURRENTCUBE.[Measures].[WizardDone]
AS
(
[Measures].[DWH FACT Events Count] ,
[DWH DIM Event Name].[Event Name].&[wizard_done-button_click]
)
This calculated member gives me the result I want, but it doesn't update when I browse the cube and try to slice it by different dimensions.

Related

MDX OLAP Cube Query Optimization

Problem: I'm trying to write a MDX query that will show the first date a member has measure values.
Data obstacles:
1. I don't have access to the data warehouse/source data
2. I can't request any physical calcs or CUBE changes
Looking for: I know this goes against what a CUBE should be doing, but is there any way to achieve this result. I'm running into locking conflicts and general run time issues.
Background: After some trial and error. I have a working query but sadly it's only is practical when filtered for <10 employees. I've tried some looping but there are ~60k employee ids in the cube with each one having 10-20 emp keys (one for each change in their employee info).
//must have values for measure 1 or 2
WITH
set NE_measures as
{
[Measures].[measure1] ,
[Measures].[measure2]
}
//first date with measure values for each unique emp key
MEMBER [Measures].[changedate] AS
Head
(
NonEmpty([Dim Date].[Date].[Date].allMEMBERS, NE_measures)
).Item(0).Member_Name
SELECT non empty {[Measures].[changedate]} ON COLUMNS,
non empty [Dim Employee].[Emp Key].[Emp Key].allmembers ON ROWS
FROM [Cube]
Try this:
MEMBER [Measures].[changedate] AS
Min(
[Dim Date].[Date].[Date].allMEMBERS,
IIF(
NOT(ISEMPTY([Measures].[measure1]))
OR NOT(ISEMPTY([Measures].[measure2])),
[Dim Date].[Date].CurrentMember.MemberValue,
NULL
)
);
I’m assuming the KeyColumn or ValueColumn is more likely to sort properly than the name. So if MemberValue doesn’t work then try Member_Key.
The most efficient way of accomplishing this would be to add a date column in the fact table with measure 1 and measure 2 then create a AggregateFunction=Min measure on it. But you said you couldn’t change the cube so I didn’t propose that superior option.

Create a Calculated Member to remove need to load pre calculated measure

I am trying to replicate the following sql statement into MDX so that I can create a calculated member in the cube using the base loaded members instead of having to calculate it outside the cube in the table and then loading it
SUM(CASE WHEN ((A.SALES_TYPE_CD = 1) AND (A.REG_SALES=0))
THEN A.WIN_SALES
ELSE 0
END) AS Z_SALES
I am currently loading SALES_TYPE_CD as a dimension and REG_SALES and WIN_SALES as measures.
I also have a few other dimensions in the cube but for simplicity, lets just say I have 2 other dimensions, LOCATION and ITEM
The dimension has LOCATION has 3 levels, "Region"->"District"->"Store", ordered from top to bottom level.
The dimension has ITEM has 3 levels, "CLASS"->"SUBCLASS"->"SKU", ordered from top to bottom level.
The dimension has SALES TYPE has 2 levels, "SALES_TYPE_GROUP"->"SALES_TYPE_CD", ordered from top to bottom level.
I know that I cannot create a simple calculated member in the cube which crossjoins the "SALES_TYPE" dimension with another dimension to get the answer I want.
I would think that it would be a more complicated MDX statement something like :
CREATE MEMBER CURRENTCUBE.[Measures].[Z_Sales]
AS 'sum(filter(crossjoin(leaves(), [Sales Type].[Sales Type].
[Sales_Type_CD].&[1]), [Measures].[REG_SALES]=0),[Measures].
[WIN_SALES])',
FORMAT_STRING = '#,#',
VISIBLE = 1 ;
But this does not seem to return the desired result.
What would be the proper MDX code to generate the desired result?
I did a bunch of testing with the data and I now know that there is no way I can get the right answer by using MDX alone in this scenario. Like "Greg" and "Tab" suggested, the only way would be to have reg sales as a dimension. Since this is a measure, that is out of the question because of the large number of possibilities for the value which has a data type of decimal (18,2)
Thanks for taking the time to answer the question.

SSAS 2012 Calculated Member for Percentage

Being an SSAS newbie, I was wondering if it's possible to create a calculated member that references an individual row's value as well as the aggregated value in order to create a percentage?
For example, if I have a fact table with ValueA, I'd like to create a calculate member that essentially performed:
[Measures].[ValueA] (for each row I've sliced the data by) / [Measures].[ValueA] (the total)
Also I'd like to keep the total as the sum of whatever's been filtered in the cube browser. I feel certain this must be possible but I'm clearly missing something.
You can use the Axis function. Her is an example:
WITH MEMBER [Measures].[Percentage] AS
[Measures].[ValueA] / (Axis(1).CurrenMember.Parent, [Measures].[ValueA])
SELECT {[Measures].[ValueA], [Measures].[Percentage]} ON 0,
'what you want' ON 1
FROM your cube
(You may need to add check in the calculated member expression)

SSAS & OLAP cube: twice same measure

I'm not very experienced in OLAP Cube + MDX, and I'm having a hard time trying to use twice the same measure in a cube.
Let's say that we have 3 Dimensions: D_DATE, D_USER, D_TYPE_OF_SALE_TARGET and 3 tables of Fact: F_SALE, F_MEETING, F_SALE_TARGET
F_SALE is linked to D_USER (who make the sale) and D_DATE (when)
F_SALE_TARGET is linked to D_USER, D_DATE, D_TYPE_OF_SALE_TARGET (meaning: user has to reach various goals/targets for a given month).
I can browse my cube:
Rows = Date * User
Cols = Number of sale, Total amount of sale + the value of 1 target (in the WHERE clause, I filter on [Dim TYPE SALE TARGET].[Code].&[code.numberOfSales])
How can I add other columns for other targets? As all the targets are in the same table, I don't see how to add a second measure from [Measures].[Value - F_SALE_TARGET] linked to a different code, ie. [Dim TYPE SALE TARGET].[Code].&[code.amountOfSale].
your question is not clear to me but it seems like one way to accomplish that is by creating Calculated Members. Basically, select you cube in BIDS, go to the Calculations tab and create Calculated Members. You would be able to insert your MDX query there. For each target type you can create a different calculation such as: ([Measures].[Value - F_SALE_TARGET], [Dim TYPE SALE TARGET].[Code].&[code.amountOfSale])

Filtering a Measure (or Removing Outliers)

Say I have a measure, foo, in a cube, and I have a reporting requirement that users want to see the following measures in a report:
total foo
total foo excluding instances where foo > 10
total foo excluding instances where foo > 30
What is the best way to handle this?
In the past, I have added Named Calculations which return NULL if foo > 10 or just foo otherwise.
I feel like there has to be a way to accomplish this in MDX (something like Filter([Measures].[foo], [Measures].[foo] > 10)), but I can't for the life of me figure anything out.
Any ideas?
The trick is that you need to apply the filter on your set, not on your measure.
For example, using the usual Microsoft 'warehouse and sales' demo cube, the following MDX will display the sales for all the stores where sales were greater than $2000.
SELECT Filter([Store].[Stores].[Store].members, [Unit Sales] > 2000) ON COLUMNS,
[Unit Sales] ON ROWS
FROM [Warehouse and Sales]
I met similar problem when use saiku (backend with Mondrain), as I haven't found any clear solution of "add filter on measure", I added it here, and that may be useful for other guy.
In Saiku3.8, you could add filter on UI: "column"->"filter"->"custom", then you may see a Filter MDX Expression.
Let's suppose we want clicks in Ad greater than 1000, then add the following line there:
[Measures].[clicks] > 1000
Save and close, then that filter will be valid for find elem with clicks greater than 1000.
The MDX likes below (suppose dt as dimension and clicks as measure, we want to find dt with clicks more than 1000)
WITH
SET [~ROWS] AS
Filter({[Dt].[dt].[dt].Members}, ([Measures].[clicks] > 1000))
SELECT
NON EMPTY {[Measures].[clicks]} ON COLUMNS,
NON EMPTY [~ROWS] ON ROWS
FROM [OfflineData]
i think you have two choices:
1- Add column to your fact(or view on data source view that is based on fact table)like:
case when unit_Price>2000 then 1
else 0
end as Unit_Price_Uper_Or_Under_10
and add a fictitious Dimension based on this columns value.
and add named query for New Dimension(say Range_Dimension in datasourceview :
select 1 as range
union all
select 0 as range
and after taht you cant used this filter like other dimension and attribute.
SELECT [Store].[Stores].[Store].members ON COLUMNS,
[Unit Sales] ON ROWS
FROM [Warehouse and Sales]
WHERE [Test_Dimension].[Range].&[1]
the problem is for every range you must add When condition and only if the range is static this solution is a good solution.
and for dynamic range it's better to formulate the range (based on disceretizing method )
2- add dimension with granularity near fact table based on fact table
for example if we have fact table with primary key Sale_id.we can add
dimension based on fact table with only one column sale_Id and in dimension Usage tab
we can relate this new dimension and measure group with relation type Fact and
after that in mdx we can use something like :
filter([dim Sale].[Sale Id].[Sale Id].members,[Measures].[Unit Price]>2000)