Pros and cons of using "id" as the return type of a custom "init" method, instead of a pointer to that class? - objective-c

Assume the following Objective-C class:
#interface Appliance : NSObject
{
NSString *productName;
int voltage;
}
#end
What are the pros and cons of implementing init method A instead of B?
A) -(id)initWithName:(NSString *)name;
B) -(Appliance *)initWithName:(NSString *)name;
I see they both work in XCode, i.e. they both will result in a valid Appliance instance. "A" seems to be the standard among books I've read and codebases I've looked at, and I'm wondering why this is.

Point in fact, for quite some time the best practice return type from a class initializer (in Objective-C) is instancetype instead of id.

Oh, reopen. :-)
Indeed, you did not ask for the difference id vs. instancetype. And for -init… the answer to this non-asked Q would be easy: There is no difference, because the compiler converts id to instancetype silently.
You asked for id vs. CustomClass*. And you get a completely different answer from me: With CustomClass* a subclass had to cast the result of the superclass' designated initializer. Let's have an example:
#interface BaseClass : NSObject
- (BaseClass*)initWithWhatever; // Typed to class, designated initializer
#end
#implementation BaseClass
- (BaseClass*)initWithWhatever // Typed to class
{
self = [super init]; // What's the return type of -init (NSObject)?
…
}
#end
#interface Subclass : BaseClass
// First problem: I like it to announce in the interface, that a class overwrites
// a method of the base class. Doing so I would have to change the return type. Ugly.
// If I do not redeclare -initWithWhatever it is inherited from BaseClass, still
// having BaseClass* as the return type. Is that the truth? Really?
// However, I do not overwrite it here, but have a new initializer.
- (Subclass*)initWithSomethingElse;
#end
#implementation Subclass
- (Subclass*)initWithSomethingElse
{
// Second Problem:
// First, I have to execute the superclass' designated initializer
self = [super initWithWhatever];
// Wait a minute!
// self is a reference to Subclass. The return value of -initWithWhatever has the type
// BaseClass*. So I assign a reference of the base class to a reference of the subclass:
// Compiler error, false positive. The code is correct.
// So I would have to cast. Ugly, ugly, ugly.
#end
…
// Third problem:
Subclass *object = [[Subclass alloc] initWithWhatever];
// Typing -initWithWhatever to BaseClass* would lead to a compiler error here again.
// Compiler error, false positive. The code is correct.
To make the long story short: Without a mass of castings it would be impossible to type initializers to the concrete class.

Related

Objective-C: Overriding Getter & Setter with Instance Variable (using _) [duplicate]

This question already has answers here:
Error accessing generated ivars when I override setters and getters in Modern Objective-C
(3 answers)
Closed 5 years ago.
I'm learning the Swift programing language and during this I sometimes get in touch with the old Objective-C programming language and its code.
I'm an absolutely beginner and therefore I have some question for better understanding the Setter and Getter.
So, I know that I can create an instance variable through curly braces in the .h file but normally I use properties. These properties are backed by an instance variable and offer automatically a Getter and Setter Method.
Example:
Vehicle .h file:
#interface Vehicle : NSObject
#property int myProperty;
#end
Because I created this property I don't have to declare a Getter and Setter method in the vehicle.m file because they are automatically created by the compiler. So I can create a vehicle-object, set and get the value.
Example
main.m
Vehicle *myvehicle = [[vehicle alloc] init];
[myvehicle myProperty] // myvehicle.myProperty
[myvehicle setMyProperty : 10] // myvehicle.myProperty = 10;
Now I read that it is possible to override the automatically created Getter and Setter method of my created property "myProperty". When declaring my own version of the Getter and Setter I have to declare two methods in the vehicle.h and vehicle.m file. In the vehicle.m file I don't call the object by using the self keyword but by using it's automatically created instance variable (_myProperty). Is it right?
I tried it but alway get an error and I don't know why and what is the point.
Example
Vehicle .h file:
#interface Vehicle : NSObject
#property int myProperty;
-(int) myProperty; //my new Getter method
-(void) setMyProperty: (int)updatedMyProperty; //My new Setter method
#end
vehicle .m file:
#implementation Vehicle
-(int) myProperty {
if (! _myProperty) {
_myProperty = NO;
}
return _myProperty;
}
-(void) setMyProperty: (int)updatedMyProperty {
if (_myProperty == updatedMyProperty) return;
_myProperty = updatedMyProperty;
}
#end
I always get the error "Use of undeclared identifier" and I don't know why. If I understand right I don't have to declare the ivar or its name using #synthesize because the compiler automatically creates the ivar called _myProperty for me. I just have to use #synthesize when I want to change the ivar's name.
I'm not sure why I get stuck and what the point is. Could you explain it?
Thanks in advance!
If you implement all of the accessor methods, the compiler will no longer automatically synthesize the ivar for you. In this case, you have to explicitly do so yourself. E.g.
#synthesize myProperty = _myProperty;
This is only necessary when you have manually implemented all of the accessor methods. The reason is that the compiler is smart enough to know that if you're taking over the accessor methods, you may well not need the ivar, namely that you might be doing something radically different, e.g. computing values from some other property, setting/getting values from some different store, etc. You may want the compiler to synthesize the ivar (in which case you add the above #synthesize statement), but it's equally likely that you've implemented the accessor methods because no backing ivar is needed (in which case you'd omit the above #synthesize statement).
Anyway, staying with your simple example, you get something like:
#interface Vehicle : NSObject
#property (nonatomic) int myProperty; // if you don't write atomic accessor methods, you really should be explicit that this is nonatomic
// as an aside, even if you implement accessor methods, you don't have to declare them here
//
// -(int) myProperty; //my new Getter method
// -(void) setMyProperty: (int)updatedMyProperty; //My new Setter method
#end
And
#implementation Vehicle
// since you implemented all of the accessor properties, you have to manually synthesize the ivar
#synthesize myProperty = _myProperty;
- (int) myProperty {
// do whatever you want here; note, the following doesn't make sense
//
// if (! _myProperty) {
// _myProperty = NO;
// }
return _myProperty;
}
- (void)setMyProperty:(int)updatedMyProperty {
if (_myProperty == updatedMyProperty) return;
_myProperty = updatedMyProperty;
}
#end
Clearly, there's no point in writing these particular accessor methods in the above example, because you're not offering any new functionality, so you wouldn't. You'd just avail yourself of the auto-synthesized accessor methods.
But in those cases that you really need to write your own accessor methods, then you have to explicitly tell the compiler whether you need it to synthesize the ivar for you, too, or not.

Does super work only with methods

Being new to objectiveC I was experimenting with the super keyword. I wanted to know if the super keyword is only used for calling the base class method.
Consider the following code
#interface foo_base : NSObject
{
int int_ivar;
}
-(void) base_method;
-(void) shared_method;
#end
#interface foo_der : foo_base
-(void) der_method;
-(void) shared_method;
#end
In the implementation of shared_method if I try doing this
#implementation foo_der
- (void) shared_method
{
[super shared_method]; //Works ok call base class method
int_ivar =23; //Works ok (Access base class ivar)
self->int_ivar = 23; //Works ok (Access base class ivar)
super->int_ivar=23; //Error- Why ? is super only limited to methods?
}
...
...
#end
Is the super keyword only used for calling the base class methods from the derived class ?
Yes, super is only for invoking methods. super is not really an object pointer. If it were, it would have the same pointer value as self. They refer to the same thing. It's just that super changes the lookup of the method implementation.
When you message self, the search for the implementation for the message you sent begins in the actual class of the object pointed to by self. That can be different than the static type of the self pointer.
When you message super, the search begins in the superclass of the class in whose implementation the message-to-super statement appears. That's the only purpose of super.

Setting default values for inherited property without using accessor

I always see people debating whether or not to use a property's setter in the -init method. My problem is how to create a default value in a subclass for an inherited property. Say we have a class called NSLawyer -- a framework class, that I can't change -- with an interface that looks like this:
#interface NSLawyer : NSObject {
#private
NSUInteger _numberOfClients;
}
#property (nonatomic, assign) NSUInteger numberOfClients;
#end
And an implementation that looks like this:
#implementation NSLawyer
- (instancetype)init
{
self = [super init];
if (self) {
_numberOfClients = 0;
}
return self;
}
#end
Now let's say I want to extend NSLawyer. My subclass will be called SeniorPartner. And since a senior partner should have lots of clients, when SeniorPartner gets initialized, I don't want the instance to start with 0; I want it to have 10. Here's SeniorPartner.m:
#implementation SeniorPartner
- (instancetype)init
{
self = [super init];
if (self) {
// Attempting to set the ivar directly will result in the compiler saying,
// "Instance variable _numberOfClients is private."
// _numberOfClients = 10; <- Can't do this.
// Thus, the only way to set it is with the mutator:
self.numberOfClients = 10;
// Or: [self setNumberOfClients:10];
}
return self;
}
#end
So what's a Objective-C newcomer to do? Well, I mean, there's only one thing I can do, and that's set the property. Unless there's something I'm missing. Any ideas, suggestions, tips, or tricks?
You should do exactly has you have; call the accessor. The declaring class typically avoids calling its own accessors in init to avoid accidentally calling an overridden accessor in a subclass that might rely on the consistency of data you haven't initialized yet. Your superclass on the other hand should be completely consistent by the time the subclass's init is run, so there is no problem using superclass accessors at that time.
Consider the common and general case: you want to set your transform in a UIView subclass. How would you solve that other than call setTransform:? Subclassing non-Apple code is no different.
Make it #protected. It is very rare to make an ivar or property private these days. Private ivars and/or properties are better declared in the implementation. For that matter #protected ivars/properties are rarely seen in Objective-C but perfectly fine.
Using a setter either as a method or with dot notation is just wrong (yes it works but is really bad form), if you want use setters/getters declare a property.

From another class, how do I call a method that's declared in the implementation file but not interface?

In this tutorial here: http://www.raywenderlich.com/62989/introduction-c-ios-developers-part-1
It mentions that for Objective-C:
Even if you only declare a method inside the implementation of a
class, and don’t expose it in the interface, you technically could
still call that method externally.
How is this done?
There are a lot of ways.
For example, as long as a compatible method is declared somewhere, you can call it normally with dynamic typing. Here's a demonstration:
// MyClass.h
#interface MyClass : NSObject
#end
// MyClass.m
#interface MyClass()
- (void)addObject;
#end
#implementation MyClass
- (void)addObject:(id)object {
NSLog(#"Whoa, I got called!");
}
#end
// main.m
#import <Foundation/Foundation.h>
#import "MyClass.h"
int main() {
id something = [[MyClass alloc] init];
[something addObject:#"Look ma, no errors!"];
return 0;
}
Since there is a known method named addObject: that takes an object, and id variables are dynamically typed, this is 100% valid and will call MyClass's addObject: method.
They could even get it with a statically typed variable and a method that isn't known by declaring the method in a category. A few other options:
using performSelector: as #michaels showed in his answer
going straight to objc_msgSend()
getting the method IMP and calling it directly.
You can use the performSelector: method of NSObject, though the compiler will give you a warning if the selector is not publicly declared anywhere
[someObject performSelector:#selector(someMethod)];

Creating an abstract class in Objective-C

I'm originally a Java programmer who now works with Objective-C. I'd like to create an abstract class, but that doesn't appear to be possible in Objective-C. Is this possible?
If not, how close to an abstract class can I get in Objective-C?
Typically, Objective-C class are abstract by convention only—if the author documents a class as abstract, just don't use it without subclassing it. There is no compile-time enforcement that prevents instantiation of an abstract class, however. In fact, there is nothing to stop a user from providing implementations of abstract methods via a category (i.e. at runtime). You can force a user to at least override certain methods by raising an exception in those methods implementation in your abstract class:
[NSException raise:NSInternalInconsistencyException
format:#"You must override %# in a subclass", NSStringFromSelector(_cmd)];
If your method returns a value, it's a bit easier to use
#throw [NSException exceptionWithName:NSInternalInconsistencyException
reason:[NSString stringWithFormat:#"You must override %# in a subclass", NSStringFromSelector(_cmd)]
userInfo:nil];
as then you don't need to add a return statement from the method.
If the abstract class is really an interface (i.e. has no concrete method implementations), using an Objective-C protocol is the more appropriate option.
No, there is no way to create an abstract class in Objective-C.
You can mock an abstract class - by making the methods/ selectors call doesNotRecognizeSelector: and therefore raise an exception making the class unusable.
For example:
- (id)someMethod:(SomeObject*)blah
{
[self doesNotRecognizeSelector:_cmd];
return nil;
}
You can also do this for init.
Just riffing on #Barry Wark's answer above (and updating for iOS 4.3) and leaving this for my own reference:
#define mustOverride() #throw [NSException exceptionWithName:NSInvalidArgumentException reason:[NSString stringWithFormat:#"%s must be overridden in a subclass/category", __PRETTY_FUNCTION__] userInfo:nil]
#define methodNotImplemented() mustOverride()
then in your methods you can use this
- (void) someMethod {
mustOverride(); // or methodNotImplemented(), same thing
}
Notes: Not sure if making a macro look like a C function is a good idea or not, but I'll keep it until schooled to the contrary. I think it's more correct to use NSInvalidArgumentException (rather than NSInternalInconsistencyException) since that's what the runtime system throws in response to doesNotRecognizeSelector being called (see NSObject docs).
The solution I came up with is:
Create a protocol for everything you want in your "abstract" class
Create a base class (or maybe call it abstract) that implements the protocol. For all the methods you want "abstract" implement them in the .m file, but not the .h file.
Have your child class inherit from the base class AND implement the protocol.
This way the compiler will give you a warning for any method in the protocol that isn't implemented by your child class.
It's not as succinct as in Java, but you do get the desired compiler warning.
From the Omni Group mailing list:
Objective-C doesn't have the abstract compiler construct like Java at
this time.
So all you do is define the abstract class as any other normal class
and implement methods stubs for the abstract methods that either are
empty or report non-support for selector. For example...
- (id)someMethod:(SomeObject*)blah
{
[self doesNotRecognizeSelector:_cmd];
return nil;
}
I also do the following to prevent the initialization of the abstract
class via the default initializer.
- (id)init
{
[self doesNotRecognizeSelector:_cmd];
[self release];
return nil;
}
Instead of trying to create an abstract base class, consider using a protocol (similar to a Java interface). This allows you to define a set of methods, and then accept all objects that conform to the protocol and implement the methods. For example, I can define an Operation protocol, and then have a function like this:
- (void)performOperation:(id<Operation>)op
{
// do something with operation
}
Where op can be any object implementing the Operation protocol.
If you need your abstract base class to do more than simply define methods, you can create a regular Objective-C class and prevent it from being instantiated. Just override the - (id)init function and make it return nil or assert(false). It's not a very clean solution, but since Objective-C is fully dynamic, there's really no direct equivalent to an abstract base class.
This thread is kind of old, and most of what I want to share is already here.
However, my favorite method is not mentioned, and AFAIK there’s no native support in the current Clang, so here I go…
First, and foremost (as others have pointed out already) abstract classes are something very uncommon in Objective-C — we usually use composition (sometimes through delegation) instead. This is probably the reason why such a feature doesn’t already exist in the language/compiler — apart from #dynamic properties, which IIRC have been added in ObjC 2.0 accompanying the introduction of CoreData.
But given that (after careful assessment of your situation!) you have come to the conclusion that delegation (or composition in general) isn’t well suited to solving your problem, here’s how I do it:
Implement every abstract method in the base class.
Make that implementation [self doesNotRecognizeSelector:_cmd];…
…followed by __builtin_unreachable(); to silence the warning you’ll get for non-void methods, telling you “control reached end of non-void function without a return”.
Either combine steps 2. and 3. in a macro, or annotate -[NSObject doesNotRecognizeSelector:] using __attribute__((__noreturn__)) in a category without implementation so as not to replace the original implementation of that method, and include the header for that category in your project’s PCH.
I personally prefer the macro version as that allows me to reduce the boilerplate as much as possible.
Here it is:
// Definition:
#define D12_ABSTRACT_METHOD {\
[self doesNotRecognizeSelector:_cmd]; \
__builtin_unreachable(); \
}
// Usage (assuming we were Apple, implementing the abstract base class NSString):
#implementation NSString
#pragma mark - Abstract Primitives
- (unichar)characterAtIndex:(NSUInteger)index D12_ABSTRACT_METHOD
- (NSUInteger)length D12_ABSTRACT_METHOD
- (void)getCharacters:(unichar *)buffer range:(NSRange)aRange D12_ABSTRACT_METHOD
#pragma mark - Concrete Methods
- (NSString *)substringWithRange:(NSRange)aRange
{
if (aRange.location + aRange.length >= [self length])
[NSException raise:NSInvalidArgumentException format:#"Range %# exceeds the length of %# (%lu)", NSStringFromRange(aRange), [super description], (unsigned long)[self length]];
unichar *buffer = (unichar *)malloc(aRange.length * sizeof(unichar));
[self getCharacters:buffer range:aRange];
return [[[NSString alloc] initWithCharactersNoCopy:buffer length:aRange.length freeWhenDone:YES] autorelease];
}
// and so forth…
#end
As you can see, the macro provides the full implementation of the abstract methods, reducing the necessary amount of boilerplate to an absolute minimum.
An even better option would be to lobby the Clang team to providing a compiler attribute for this case, via feature requests. (Better, because this would also enable compile-time diagnostics for those scenarios where you subclass e.g. NSIncrementalStore.)
Why I Choose This Method
It get’s the job done efficiently, and somewhat conveniently.
It’s fairly easy to understand. (Okay, that __builtin_unreachable() may surprise people, but it’s easy enough to understand, too.)
It cannot be stripped in release builds without generating other compiler warnings, or errors — unlike an approach that’s based on one of the assertion macros.
That last point needs some explanation, I guess:
Some (most?) people strip assertions in release builds. (I disagree with that habit, but that’s another story…) Failing to implement a required method — however — is bad, terrible, wrong, and basically the end of the universe for your program. Your program cannot work correctly in this regard because it is undefined, and undefined behavior is the worst thing ever. Hence, being able to strip those diagnostics without generating new diagnostics would be completely unacceptable.
It’s bad enough that you cannot obtain proper compile-time diagnostics for such programmer errors, and have to resort to at-run-time discovery for these, but if you can plaster over it in release builds, why try having an abstract class in the first place?
Using #property and #dynamic could also work. If you declare a dynamic property and don't give a matching method implementation, everything will still compile without warnings, and you'll get an unrecognized selector error at runtime if you try to access it. This essentially the same thing as calling [self doesNotRecognizeSelector:_cmd], but with far less typing.
In Xcode (using clang etc) I like to use __attribute__((unavailable(...))) to tag the abstract classes so you get an error/warning if you try and use it.
It provides some protection against accidentally using the method.
Example
In the base class #interface tag the "abstract" methods:
- (void)myAbstractMethod:(id)param1 __attribute__((unavailable("You should always override this")));
Taking this one-step further, I create a macro:
#define UnavailableMacro(msg) __attribute__((unavailable(msg)))
This lets you do this:
- (void)myAbstractMethod:(id)param1 UnavailableMacro(#"You should always override this");
Like I said, this is not real compiler protection but it's about as good as your going to get in a language that doesn't support abstract methods.
The answer to the question is scattered around in the comments under the already given answers. So, I am just summarising and simplifying here.
Option1: Protocols
If you want to create an abstract class with no implementation use 'Protocols'. The classes inheriting a protocol are obliged to implement the methods in the protocol.
#protocol ProtocolName
// list of methods and properties
#end
Option2: Template Method Pattern
If you want to create an abstract class with partial implementation like "Template Method Pattern" then this is the solution.
Objective-C - Template methods pattern?
Another alternative
Just check the class in the Abstract class and Assert or Exception, whatever you fancy.
#implementation Orange
- (instancetype)init
{
self = [super init];
NSAssert([self class] != [Orange class], #"This is an abstract class");
if (self) {
}
return self;
}
#end
This removes the necessity to override init
(more of a related suggestion)
I wanted to have a way of letting the programmer know "do not call from child" and to override completely (in my case still offer some default functionality on behalf of the parent when not extended):
typedef void override_void;
typedef id override_id;
#implementation myBaseClass
// some limited default behavior (undesired by subclasses)
- (override_void) doSomething;
- (override_id) makeSomeObject;
// some internally required default behavior
- (void) doesSomethingImportant;
#end
The advantage is that the programmer will SEE the "override" in the declaration and will know they should not be calling [super ..].
Granted, it is ugly having to define individual return types for this, but it serves as a good enough visual hint and you can easily not use the "override_" part in a subclass definition.
Of course a class can still have a default implementation when an extension is optional. But like the other answers say, implement a run-time exception when appropriate, like for abstract (virtual) classes.
It would be nice to have built in compiler hints like this one, even hints for when it is best to pre/post call the super's implement, instead of having to dig through comments/documentation or... assume.
If you are used to the compiler catching abstract instantiation violations in other languages, then the Objective-C behavior is disappointing.
As a late binding language it is clear that Objective-C cannot make static decisions on whether a class truly is abstract or not (you might be adding functions at runtime...), but for typical use cases this seems like a shortcoming. I would prefer the compiler flat-out prevented instantiations of abstract classes instead of throwing an error at runtime.
Here is a pattern we are using to get this type of static checking using a couple of techniques to hide initializers:
//
// Base.h
#define UNAVAILABLE __attribute__((unavailable("Default initializer not available.")));
#protocol MyProtocol <NSObject>
-(void) dependentFunction;
#end
#interface Base : NSObject {
#protected
__weak id<MyProtocol> _protocolHelper; // Weak to prevent retain cycles!
}
- (instancetype) init UNAVAILABLE; // Prevent the user from calling this
- (void) doStuffUsingDependentFunction;
#end
//
// Base.m
#import "Base.h"
// We know that Base has a hidden initializer method.
// Declare it here for readability.
#interface Base (Private)
- (instancetype)initFromDerived;
#end
#implementation Base
- (instancetype)initFromDerived {
// It is unlikely that this becomes incorrect, but assert
// just in case.
NSAssert(![self isMemberOfClass:[Base class]],
#"To be called only from derived classes!");
self = [super init];
return self;
}
- (void) doStuffUsingDependentFunction {
[_protocolHelper dependentFunction]; // Use it
}
#end
//
// Derived.h
#import "Base.h"
#interface Derived : Base
-(instancetype) initDerived; // We cannot use init here :(
#end
//
// Derived.m
#import "Derived.h"
// We know that Base has a hidden initializer method.
// Declare it here.
#interface Base (Private)
- (instancetype) initFromDerived;
#end
// Privately inherit protocol
#interface Derived () <MyProtocol>
#end
#implementation Derived
-(instancetype) initDerived {
self= [super initFromDerived];
if (self) {
self->_protocolHelper= self;
}
return self;
}
// Implement the missing function
-(void)dependentFunction {
}
#end
Probably this kind of situations should only happen at development time, so this might work:
- (id)myMethodWithVar:(id)var {
NSAssert(NO, #"You most override myMethodWithVar:");
return nil;
}
You can use a method proposed by #Yar (with some modification):
#define mustOverride() #throw [NSException exceptionWithName:NSInvalidArgumentException reason:[NSString stringWithFormat:#"%s must be overridden in a subclass/category", __PRETTY_FUNCTION__] userInfo:nil]
#define setMustOverride() NSLog(#"%# - method not implemented", NSStringFromClass([self class])); mustOverride()
Here you will get a message like:
<Date> ProjectName[7921:1967092] <Class where method not implemented> - method not implemented
<Date> ProjectName[7921:1967092] *** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '-[<Base class (if inherited or same if not> <Method name>] must be overridden in a subclass/category'
Or assertion:
NSAssert(![self respondsToSelector:#selector(<MethodName>)], #"Not implemented");
In this case you will get:
<Date> ProjectName[7926:1967491] *** Assertion failure in -[<Class Name> <Method name>], /Users/kirill/Documents/Projects/root/<ProjectName> Services/Classes/ViewControllers/YourClass:53
Also you can use protocols and other solutions - but this is one of the simplest ones.
Cocoa doesn’t provide anything called abstract. We can create a class abstract which gets checked only at runtime, and at compile time this is not checked.
I usually just disable the init method in a class that I want to abstract:
- (instancetype)__unavailable init; // This is an abstract class.
This will generate an error at compile time whenever you call init on that class. I then use class methods for everything else.
Objective-C has no built-in way for declaring abstract classes.
Changing a little what #redfood suggested by applying #dotToString's comment, you actually have the solution adopted by Instagram's IGListKit.
Create a protocol for all the methods that make no sense to be defined in the base (abstract) class i.e. they need specific implementations in the children.
Create a base (abstract) class that does not implement this protocol. You can add to this class any other methods that make sense to have a common implementation.
Everywhere in your project, if a child from AbstractClass must be input to or output by some method, type it as AbstractClass<Protocol> instead.
Because AbstractClass does not implement Protocol, the only way to have an AbstractClass<Protocol> instance is by subclassing. As AbstractClass alone can't be used anywhere in the project, it becomes abstract.
Of course, this doesn't prevent unadvised developers from adding new methods referring simply to AbstractClass, which would end up allowing an instance of the (not anymore) abstract class.
Real world example: IGListKit has a base class IGListSectionController which doesn't implement the protocol IGListSectionType, however every method that requires an instance of that class, actually asks for the type IGListSectionController<IGListSectionType>. Therefore there's no way to use an object of type IGListSectionController for anything useful in their framework.
In fact, Objective-C doesn't have abstract classes, but you can use Protocols to achieve the same effect. Here is the sample:
CustomProtocol.h
#import <Foundation/Foundation.h>
#protocol CustomProtocol <NSObject>
#required
- (void)methodA;
#optional
- (void)methodB;
#end
TestProtocol.h
#import <Foundation/Foundation.h>
#import "CustomProtocol.h"
#interface TestProtocol : NSObject <CustomProtocol>
#end
TestProtocol.m
#import "TestProtocol.h"
#implementation TestProtocol
- (void)methodA
{
NSLog(#"methodA...");
}
- (void)methodB
{
NSLog(#"methodB...");
}
#end
A simple example of creating an abstract class
// Declare a protocol
#protocol AbcProtocol <NSObject>
-(void)fnOne;
-(void)fnTwo;
#optional
-(void)fnThree;
#end
// Abstract class
#interface AbstractAbc : NSObject<AbcProtocol>
#end
#implementation AbstractAbc
-(id)init{
self = [super init];
if (self) {
}
return self;
}
-(void)fnOne{
// Code
}
-(void)fnTwo{
// Code
}
#end
// Implementation class
#interface ImpAbc : AbstractAbc
#end
#implementation ImpAbc
-(id)init{
self = [super init];
if (self) {
}
return self;
}
// You may override it
-(void)fnOne{
// Code
}
// You may override it
-(void)fnTwo{
// Code
}
-(void)fnThree{
// Code
}
#end
Can't you just create a delegate?
A delegate is like an abstract base class in the sense that you say what functions need to be defined, but you don't actually define them.
Then whenever you implement your delegate (i.e abstract class) you are warned by the compiler of what optional and mandatory functions you need to define behavior for.
This sounds like an abstract base class to me.