Can disque handle RPC? - disque

I have implemented a RPC which is disqueue-node on npm. My concern is that I have achieved this using 3 tcp connections for request, response and replyQueue. In the reason that get jobs waits until it gets jobs then hangs up the rest of the commands. Do you think it can be achieved using 1 tcp connection?

If you want to use both GETJOB and ADDJOB in the context of the same connection, you may want to use either short timeouts or the NOHANG option of GETJOB in order to avoid blocking if there are no messages to be fetched, and retry from time to time.
Note that TCP connections when idle are mostly for free, so I would not fight too much with that if you don't have a connections scalability problem yet. Moreover given the distributed nature of Disque you can distribute connections to multiple nodes in the future very easily, if you'll ever need that.
Btw in the case you have a pretty trivial RCP protocol: request, response, there should be no problem in blocking, like in:
ADDJOB ... your RCP request
reply = GETJOB ...
You still need a reasonable GETJOB timeout in order to inform the caller that the
re was a problem receiving the reply in time. And maybe it is worth to return the
original job ID to the caller, so that it can decide to wait more for the reply
(in case the RCP is non cheap to retry or alike).

Related

RabbitMQ security design to declare queues from server (and use from client)

I have a test app (first with RabbitMQ) which runs on partially trusted clients (in that i don't want them creating queues on their own), so i will look into the security permissions of the queues and credentials that the clients connect with.
For messaging there are mostly one-way broadcasts from server to clients, and sometimes a query from server to a specific client (over which the replies will be sent on a replyTo queue which is dedicated to that client on which the server listens for responses).
I currently have a receive function on the server which looks out for "Announce" broadcast from clients:
agentAnnounceListener.Received += (model, ea) =>
{
var body = ea.Body;
var props = ea.BasicProperties;
var message = Encoding.UTF8.GetString(body);
Console.WriteLine(
"[{0}] from: {1}. body: {2}",
DateTimeOffset.FromUnixTimeMilliseconds(ea.BasicProperties.Timestamp.UnixTime).Date,
props.ReplyTo,
message);
// create return replyTo queue, snipped in next code section
};
I am looking to create the return to topic in the above receive handler:
var result = channel.QueueDeclare(
queue: ea.BasicProperties.ReplyTo,
durable: false,
exclusive: false,
autoDelete: false,
arguments: null);
Alternatively, i could store the received announcements in a database, and on a regular timer run through this list and declare a queue for each on every pass.
In both scenarioes this newly created channel would then be used at a future point by the server to send queries to the client.
My questions are please:
1) Is it better to create a reply channel on the server when receiving the message from client, or if i do it externally (on a timer) are there any performance issues for declaring queues that already exist (there could be thousands of end points)?
2) If a client starts to miss behave, is there any way that they can be booted (in the receive function i can look up how many messages per minute and boot if certain criteria are met)? Are there any other filters that can be defined prior to receive in the pipeline to kick clients who are sending too many messages?
3) In the above example notice my messages continuously come in each run (the same old messages), how do i clear them out please?
I think preventing clients from creating queues just complicates the design without much security benefit.
You are allowing clients to create messages. In RabbitMQ, its not very easy to stop clients from flooding your server with messages.
If you want to rate-limit your clients, RabbitMQ may not be the best choice. It does rate-limiting automatically when servers starts to struggle with processing all the messages, but you can't set a strict rate limit on per-client basis on the server using out-of-the-box solution. Also, clients are normally allowed to create queues.
Approach 1 - Web App
Maybe you should try to use web application instead:
Clients authenticate with your server
To Announce, clients send a POST request to a certain endpoint, ie /api/announce, maybe providing some credentials that allow them to do so
To receive incoming messages, GET /api/messages
To acknowledge processed message: POST /api/acknowledge
When client acknowledges receipt, you delete your message from database.
With this design, you can write custom logic to rate-limit or ban clients that misbehave and you have full control of your server
Approach 2 - RabbitMQ Management API
If you still want to use RabbitMQ, you can potentially achieve what you want by using RabbitMQ Management API
You'll need to write an app that will query RabbitMQ Management API on timer basis and:
Get all the current connections, and check message rate for each of them.
If message rate exceed your threshold, close connection or revoke user's permissions using /api/permissions/vhost/user endpoint.
In my opinion, web app may be easier if you don't need all the queueing functionality like worker queues or complicated routing that you can get out of the box with RabbitMQ.
Here are some general architecture/reliability ideas for your scenario. Responses to your 3 specific questions are at the end.
General Architecture Ideas
I'm not sure that the declare-response-queues-on-server approach yields performance/stability benefits; you'd have to benchmark that. I think the simplest topology to achieve what you want is the following:
Each client, when it connects, declares an exclusive and/or autodelete anonymous queue. If the clients' network connectivity is so sketchy that holding open a direct connection is undesirable, so something similar to Alex's proposed "Web App" above, and have clients hit an endpoint that declares an exclusive/autodelete queue on their behalf, and closes the connection (automatically deleting the queue upon consumer departure) when a client doesn't get in touch regularly enough. This should only be done if you can't tune the RabbitMQ heartbeats from the clients to work in the face of network unreliability, or if you can prove that you need queue-creation rate limiting inside the web app layer.
Each client's queue is bound to a broadcast topic exchange, which the server uses to communicate broadcast messages (wildcarded routing key) or specifically targeted messages (routing key that only matches one client's queue name).
When the server needs to get a reply back from the clients, you could either have the server declare the response queue before sending the "response-needed" message, and encode the response queue in the message (basically what you're doing now), or you could build semantics in your clients in which they stop consuming from their broadcast queue for a fixed amount of time before attempting an exclusive (mutex) consume again, publish their responses to their own queue, and ensure that the server consumes those responses within the allotted time, before closing the server consume and restoring normal broadcast semantics. That second approach is much more complicated and likely not worth it, though.
Preventing Clients Overwhelming RabbitMQ
Things that can reduce the server load and help prevent clients DoSing your server with RMQ operations include:
Setting appropriate, low max-length thresholds on all the queues, so the amount of messages stored by the server will never exceed a certain multiple of the number of clients.
Setting per-queue expirations, or per-message expirations, to make sure that stale messages do not accumulate.
Rate-limiting specific RabbitMQ operations is quite tricky, but you can rate-limit at the TCP level (using e.g. HAProxy or other router/proxy stacks), to ensure that your clients don't send too much data, or open too many connections, at a time. In my experience (just one data point; if in doubt, benchmark!) RabbitMQ cares less about the count of messages ingested per time than it does the data volume and largest possible per-message size ingested. Lots of small messages are usually OK; a few huge ones can cause latency spikes, otherwise, rate-limiting the bytes at the TCP layer will probably allow you to scale such a system very far before you have to re-assess.
Specific Answers
In light of the above, my answers to your specific questions would be:
Q: Should you create reply queues on the server in response to received messages?
A: Yes, probably. If you're worried about the queue-creation rate
that happens as a result of that, you can rate-limit per server instance. It looks like you're using Node, so you should be able to use one of the existing solutions for that platform to have a single queue-creation rate limiter per node server instance, which, unless you have many thousands of servers (not clients), should allow you to reach a very, very large scale before re-assessing.
Q: Are there performance implications to declaring queues based on client actions? Or re-declaring queues?
A: Benchmark and see! Re-declares are probably OK; if you rate-limit properly you may not need to worry about this at all. In my experience, floods of queue-declare events can cause latency to go up a bit, but don't break the server. But that's just my experience! Everyone's scenario/deployment is different, so there's no substitute for benchmarking. In this case, you'd fire up a publisher/consumer with a steady stream of messages, tracking e.g. publish/confirm latency or message-received latency, rabbitmq server load/resource usage, etc. While some number of publish/consume pairs were running, declare a lot of queues in high parallel and see what happens to your metrics. Also in my experience, the redeclaration of queues (idempotent) doesn't cause much if any noticeable load spikes. More important to watch is the rate of establishing new connections/channels. You can also rate-limit queue creations very effectively on a per-server basis (see my answer to the first question), so I think if you implement that correctly you won't need to worry about this for a long time. Whether RabbitMQ's performance suffers as a function of the number of queues that exist (as opposed to declaration rate) would be another thing to benchmark though.
Q: Can you kick clients based on misbehavior? Message rates?
A: Yes, though it's a bit tricky to set up, this can be done in an at least somewhat elegant way. You have two options:
Option one: what you proposed: keep track of message rates on your server, as you're doing, and "kick" clients based on that. This has coordination problems if you have more than one server, and requires writing code that lives in your message-receive loops, and doesn't trip until RabbitMQ actually delivers the messages to your server's consumers. Those are all significant drawbacks.
Option two: use max-length, and dead letter exchanges to build a "kick bad clients" agent. The length limits on RabbitMQ queues tell the queue system "if more messages than X are in the queue, drop them or send them to the dead letter exchange (if one is configured)". Dead-letter exchanges allow you to send messages that are greater than the length (or meet other conditions) to a specific queue/exchange. Here's how you can combine those to detect clients that publish messages too quickly (faster than your server can consume them) and kick clients:
Each client declares it's main $clientID_to_server queue with a max-length of some number, say X that should never build up in the queue unless the client is "outrunning" the server. That queue has a dead-letter topic exchange of ratelimit or some constant name.
Each client also declares/owns a queue called $clientID_overwhelm, with a max-length of 1. That queue is bound to the ratelimit exchange with a routing key of $clientID_to_server. This means that when messages are published to the $clientID_to_server queue at too great a rate for the server to keep up, the messages will be routed to $clientID_overwhelm, but only one will be kept around (so you don't fill up RabbitMQ, and only ever store X+1 messages per client).
You start a simple agent/service which discovers (e.g. via the RabbitMQ Management API) all connected client IDs, and consumes (using just one connection) from all of their *_overwhelm queues. Whenever it receives a message on that connection, it gets the client ID from the routing key of that message, and then kicks that client (either by doing something out-of-band in your app; deleting that client's $clientID_to_server and $clientID_overwhelm queues, thus forcing an error the next time the client tries to do anything; or closing that client's connection to RabbitMQ via the /connections endpoint in the RabbitMQ management API--this is pretty intrusive and should only be done if you really need to). This service should be pretty easy to write, since it doesn't need to coordinate state with any other parts of your system besides RabbitMQ. You'll lose some messages from misbehaving clients with this solution, though: if you need to keep them all, remove the max-length limit on the overwhelm queue (and run the risk of filling up RabbitMQ).
Using that approach, you can detect spamming clients as they happen according to RabbitMQ, not just as they happen according to your server. You could extend it by also adding a per-message TTL to messages sent by the clients, and triggering the dead-letter-kick behavior if messages sit in the queue for more than a certain amount of time--this would change the pseudo-rate-limiting from "when the server consumer gets behind by message count" to "when the server consumer gets behind by message delivery timestamp".
Q: Why do messages get redelivered on each run, and how do I get rid of them?
A: Use acknowledgements or noack (but probably acknowledgements). Getting a message in "receive" just pulls it into your consumer, but doesn't pop it from the queue. It's like a database transaction: to finally pop it you have to acknowledge it after you receive it. Altnernatively, you could start your consumer in "noack" mode, which will cause the receive behavior to work the way you assumed it would. However, be warned, noack mode imposes a big tradeoff: since RabbitMQ is delivering messages to your consumer out-of-band (basically: even if your server is locked up or sleeping, if it has issued a consume, rabbit is pushing messages to it), if you consume in noack mode those messages are permanently removed from RabbitMQ when it pushes them to the server, so if the server crashes or shuts down before draining its "local queue" with any messages pending-receive, those messages will be lost forever. Be careful with this if it's important that you don't lose messages.

Immediate flag in RabbitMQ

I have a clients that uses API. The API sends messeges to rabbitmq. Rabbitmq to workers.
I ought to reply to clients if somethings went wrong - message wasn't routed to a certain queue and wasn't obtained for performing at this time ( full confirmation )
A task who is started after 5-10 seconds does not make sense.
Appropriately, I must use mandatory and immediate flags.
I can't increase counts of workers, I can't run workers on another servers. It's a demand.
So, as I could find the immediate flag hadn't been supporting since rabbitmq v.3.0x
The developers of rabbitmq suggests to use TTL=0 for a queue instead but then I will not be able to check status of message.
Whether any opportunity to change that behavior? Please, share your experience how you solved problems like this.
Thank you.
I'm not sure, but after reading your original question in Russian, it might be that using both publisher and consumer confirms may be what you want. See last three paragraphs in this answer.
As you want to get message result for published message from your worker, it looks like RPC pattern is what you want. See RabbitMQ RPC tuttorial. Pick a programming language section there you most comfortable with, overall concept is the same. You may also find Direct reply-to useful.
It's not the same as immediate flag functionality, but in case all your publishers operate with immediate scenario, it might be that AMQP protocol is not the best choice for such kind of task. Immediate mean "deliver this message right now or burn in hell" and it might be a situation when you publish more than you can process. In such cases RPC + response timeout may be a good choice on application side (e.g. socket timeout). But it doesn't work well for non-idempotent RPC calls while message still be processed, so you may want to use per-queue or per-message TTL (or set queue length limit). In case message will be dead-lettered, you may get it there (in case you need that for some reason).
TL;DR
As to "something" can go wrong, it can go so on different levels which we for simplicity define as:
before RabbitMQ, like sending application failure and network problems;
inside RabbitMQ, say, missed destination queue, message timeout, queue length limit, some hard and unexpected internal error;
after RabbitMQ, in most cases - messages processing application error or some third-party services like data persistence or caching layer outage.
Some errors like network outage or hardware error are a bit epic and are not a subject of this q/a.
Typical scenario for guaranteed message delivery is to use publisher confirms or transactions (which are slower). After you got a confirm it mean that RabbitMQ got your message and if it has route - placed in a queue. If not it is dropped OR if mandatory flag set returned with basic.return method.
For consumers it's similar - after basic.consumer/basic.get, client ack'ed message it considered received and removed from queue.
So when you use confirms on both ends, you are protected from message loss (we'll not run into a situation that there might be some bug in RabbitMQ itself).
Bogdan, thank you for your reply.
Seems, I expressed my thought enough clearly.
Scheme may looks like this. Each component of system must do what it must do :)
The an idea is make every component more simple.
How to task is performed.
Clients goes to HTTP-API with requests and must obtain a respones like this:
Positive - it have put to queue
Negative - response with error and a reason
When I was talking about confirmation I meant that I must to know that a message is delivered ( there are no free workers - rabbitmq can remove a message ), a client must be notified.
A sent message couldn't be delivered to certain queue, a client must be notified.
How to a message is handled.
Messages is sent for performing.
Status of perfoming is written into HeartBeat
Status.
Clients obtain status from HeartBeat by itself and then decide that
it's have to do.
I'm not sure, that RPC may be useful for us i.e. RPC means that clients must to wait response from server. Tasks may works a long time. Excess bound between clients and servers, additional logic on client-side.
Limited size of queue maybe not useful too.
Possible situation when a size of queue maybe greater than counts of workers. ( problem in configuration or defined settings ).
Then an idea with 5-10 seconds doesn't make sense.
TTL doesn't usefull because of:
Setting the TTL to 0 causes messages to be expired upon reaching a
queue unless they can be delivered to a consumer immediately. Thus
this provides an alternative to basic.publish's immediate flag, which
the RabbitMQ server does not support. Unlike that flag, no
basic.returns are issued, and if a dead letter exchange is set then
messages will be dead-lettered.
direct reply-to :
The RPC server will then see a reply-to property with a generated
name. It should publish to the default exchange ("") with the routing
key set to this value (i.e. just as if it were sending to a reply
queue as usual). The message will then be sent straight to the client
consumer.
Then I will not be able to route messages.
So, I'm sorry. I may flounder in terms i.e. I'm new in AMQP and rabbitmq.

RabbitMQ: throttling fast producer against large queues with slow consumer

We're currently using RabbitMQ, where a continuously super-fast producer is paired with a consumer limited by a limited resource (e.g. slow-ish MySQL inserts).
We don't like declaring a queue with x-max-length, since all messages will be dropped or dead-lettered once the limit is reached, and we don't want to loose messages.
Adding more consumers is easy, but they'll all be limited by the one shared resource, so that won't work. The problem still remains: How to slow down the producer?
Sure, we could put a flow control flag in Redis, memcached, MySQL or something else that the producer reads as pointed out in an answer to a similar question, or perhaps better, the producer could periodically test for queue length and throttle itself, but these seem like hacks to me.
I'm mostly questioning whether I have a fundamental misunderstanding. I had expected this to be a common scenario, and so I'm wondering:
What is best practice for throttling producers? How is this done with RabbitMQ? Or do you do this in a completely different way?
Background
Assume the producer actually knows how to slow himself down with the right input. E.g. a hardware sensor or hardware random number generator, that can generate as many events as needed.
In our particular real case, we have an API that users can use to add messages. Instead of devouring and discarding messages, we'd like to apply back-pressure by having our API return an error if the queue is "full", so the caller/user knows to back-off, or have the API block until the consumer catches up. We don't control our user, so regardless of how fast the consumer is, I can create a producer that is faster.
I was hoping for something like the API for a TCP socket, where a write() can block and where a select() can be used to determine if a handle is writable. So either having the RabbitMQ API block or have it return an error if the queue is full.
For the x-max-length property, you said you don't want messages to be dropped or dead-lettered. I see there was an update in adding some more capabilities for this. As I see it is specified in the documentation:
"Use the overflow setting to configure queue overflow behaviour. If overflow is set to reject-publish, the most recently published messages will be discarded. In addition, if publisher confirms are enabled, the publisher will be informed of the reject via a basic.nack message"
So as I understand it, you can use queue limit to reject the new messages from publishers thus pushing some backpressure to the upstream.
I don't think that this is in any way rabbitmq specific. Basically you have a scenario, where there are two systems of different processing capabilities, and this mismatch will either pose a risk of overflowing the queue (whatever it would be), or even in case of a constant mismatch between producer and consumer, simply create more and more time-distance between event creation and its handling.
I used to deal with this kind of scenarios, and unfortunately there is no magic bullet. You either have to speed up even handling (better hardware, more suited software?) or throttle the event creation (which has nothing to do with MQ really).
Now, I would ask you what's the goal and how the events are produced. Are the events are produced constantly, with either unlimitted or just very high rate (for example readings from sensors - the more, the better), or are they created in batches/spikes (for example: user requests in specific time periods, batch loads from CRM system). I assume that the goal is to process everything cause you mention you don't want to loose any queued message.
If the output is constant, then some limiter (either internal counter, if the producer is the only producer, or external queue length checks if queue can be filled with some other system) is definitely in place.
IF eventsInTimePeriod/timePeriod > estimatedConsumerBandwidth
THEN LowerRate()
ELSE RiseRate()
In real world scenarios we used to simply limit the output manually to the estimated values and there were some alerts set for queue length, time from queue entry to queue leaving etc. Where such limiters were omitted (by mistake mostly) we used to find later some tasks that were supposed to be handled in few hours, that were waiting for three months for their turn.
I'm afraid it's hard to answer to "How to slow down the producer?" if we know nothing about it, but some ideas are: aforementioned rate check or maybe a blocking AddMessage method:
AddMessage(message)
WHILE(getQueueLength() > maxAllowedQueueLength)
spin(1000); // or sleep or whatever
mqAdapter.AddMessage(message)
I'd say it all depends on specific of the producer application and in general your architecture.

How to handle long asynchronous requests with pyramid and celery?

I'm setting up a web service with pyramid. A typical request for a view will be very long, about 15 min to finish. So my idea was to queue jobs with celery and a rabbitmq broker.
I would like to know what would be the best way to ensure that bad things cannot happen.
Specifically I would like to prevent the task queue from overflow for example.
A first mesure will be defining quotas per IP, to limit the number of requests a given IP can submit per hour.
However I cannot predict the number of involved IPs, so this cannot solve everything.
I have read that it's not possible to limit the queue size with celery/rabbitmq. I was thinking of retrieving the queue size before pushing a new item into it but I'm not sure if it's a good idea.
I'm not used to good practices in messaging/job scheduling. Is there a recommended way to handle this kind of problems ?
RabbitMQ has flow control built into the QoS. If RabbitMQ cannot handle the publishing rate it will adjust the TCP window size to slow down the publishers. In the event of too many messages being sent to the server it will also overflow to disk. This will allow your consumer to be a bit more naive although if you restart the connection on error and flood the connection you can cause problems.
I've always decided to spend more time making sure the publishers/consumers could work with multiple queue servers instead of trying to make them more intelligent about a single queue server. The benefit is that if you are really overloading a single server you can just add another one (or another pair if using RabbitMQ HA. There is a useful video from Pycon about Messaging at Scale using Celery and RabbitMQ that should be of use.

WCF Server Push connectivity test. Ping()?

Using techniques as hinted at in:
http://msdn.microsoft.com/en-us/library/system.servicemodel.servicecontractattribute.callbackcontract.aspx
I am implementing a ServerPush setup for my API to get realtime notifications from a server of events (no polling). Basically, the Server has a RegisterMe() and UnregisterMe() method and the client has a callback method called Announcement(string message) that, through the CallbackContract mechanisms in WCF, the server can call. This seems to work well.
Unfortunately, in this setup, if the Server were to crash or is otherwise unavailable, the Client won't know since it is only listening for messages. Silence on the line could mean no Announcements or it could mean that the server is not available.
Since my goal is to reduce polling rather than immediacy, I don't mind adding a void Ping() method on the Server alongside RegisterMe() and UnregisterMe() that merely exists to test connectivity of to the server. Periodically testing this method would, I believe, ensure that we're still connected (and also that no Announcements have been dropped by the transport, since this is TCP)
But is the Ping() method necessary or is this connectivity test otherwise available as part of WCF by default - like serverProxy.IsStillConnected() or something. As I understand it, the channel's State would only return Faulted or Closed AFTER a failed Ping(), but not instead of it.
2) From a broader perspective, is this callback approach solid? This is not for http or ajax - the number of connected clients will be few (tens of clients, max). Are there serious problems with this approach? As this seems to be a mild risk, how can I limit a slow/malicious client from blocking the server by not processing it's callback queue fast enough? Is there a kind of timeout specific to the callback that I can set without affecting other operations?
Your approach sounds reasonable, here are some links that may or may not help (they are not quite exactly related):
Detecting Client Death in WCF Duplex Contracts
http://tomasz.janczuk.org/2009/08/performance-of-http-polling-duplex.html
Having some health check built into your application protocol makes sense.
If you are worried about malicious clients, then add authorization.
The second link I shared above has a sample pub/sub server, you might be able to use this code. A couple things to watch out for -- consider pushing notifications via async calls or on a separate thread. And set the sendTimeout on the tcp binding.
HTH
I wrote a WCF application and encountered a similar problem. My server checked clients had not 'plug pulled' by periodically sending a ping to them. The actual send method (it was asynchronous being a server) had a timeout of 30 seconds. The client simply checked it received the data every 30 seconds, while the server would catch an exception if the timeout was reached.
Authorisation was required to connect to the server (by using the built-in feature of WCF that force the connecting person to call a particular method first) so from a malicious client perspective you could easily add code to check and ban their account if they do something suspicious, while disconnecting users who do not authenticate.
As the server I wrote was asynchronous, there wasn't any way to really block it. I guess that addresses your last point, as the asynchronous send method fires off the ping (and any other sending of data) and returns immediately. In the SendEnd method it would catch the timeout exception (sometimes multiple for the client) and disconnect them, without any blocking or freezing of the server.
Hope that helps.
You could use a publisher / subscriber service similar to the one suggested by Juval:
http://msdn.microsoft.com/en-us/magazine/cc163537.aspx
This would allow you to persist the subscribers if losing the server is a typical scenario. The publish method in this example also calls each subscribers on a separate thread, so a few dead subscribers will not block others...