I need a way of flexible defining the order certain tasks are performed. There is no parallelism, only one task is active at a time. Every task has an outcome (a set of primitive values, like Integers Floating points or Strings. Which task is performed next can depend on the outcome of previous tasks.
Most of the time these dependencies are simple, like "outcome > 5". But sometimes they are more complex. For example a certain task is performed next, if a certain word occurs multiple times in the String-output of a previous task. They can also be more complex conditions in ways I do not think of yet.
So my Idea is to use a simple scripting language to define the flow/order of tasks. Than it can look like this:
outcome1 = performTask('task1');
outcome2 = performTask('task2');
if (outcame1.value > 3 && outcome2.value == "success) {
performTask('task3');
} else {
performTask('task4');
}
I like the Idea. Now the questions raises which scripting language to use?
Since the end user will write the scripts and possibly exchange scripts with other users, I am worried about "viruses". The outcome data is highly confidential so there must not be a way to somehow output the data. Ideally I would limit the usage of the language to the core functionality (assuming this does not involve any IO) plus a set of functions I provide.
At first I will use the language in a C++ project, but it would be nice if the browser (javascript) could be supported in the future.
I could invent my own scripting language and write my own interpreter, but that would be much work I am hoping to avoid.
So which scripting language with which interpreter could I use to meet this requirements?
What one usually does for this is "sandboxing" For example lua can be sandboxed, which is described here.
Related
I'm wondering if there is a language that supports programming in the following style that I think of as "data driven":
Imagine a language like C or Python except that it's possible to define a function whose input parameters are bound to particular variables. Then, whenever one of those input variables changes, the function is re-run.
Alternatively, the function might only ever be run when its output is needed, regardless of when its inputs are changed.
The first option is useful when things need to be kept up to date whenever something changes. The second option is useful when the computation is expensive, and you want to run it only when needed.
In my mind, this type of programming paradigm would require many stacks, perhaps one for each function that was defined in the above manner. This would allow those functions to be run in any order, and it would allow their execution to be occassionally blocked. Execution on one stack would be blocked anytime it needs the output of a function whose inputs are not yet ready.
This would be a single-threaded application. The runtime system would take care of switching from one stack to another in an appropriate manner. Deadlocks would be possible.
Lately I need to do an impact analysis on changing a DB column definition of a widely used table (like PRODUCT, USER, etc). I find it is a very time consuming, boring and difficult task. I would like to ask if there is any known methodology to do so?
The question also apply to changes on application, file system, search engine, etc. At first, I thought this kind of functional relationship should be pre-documented or some how keep tracked, but then I realize that everything can have changes, it would be impossible to do so.
I don't even know what should be tagged to this question, please help.
Sorry for my poor English.
Sure. One can technically at least know what code touches the DB column (reads or writes it), by determining program slices.
Methodology: Find all SQL code elements in your sources. Determine which ones touch the column in question. (Careful: SELECT ALL may touch your column, so you need to know the schema). Determine which variables read or write that column. Follow those variables wherever they go, and determine the code and variables they affect; follow all those variables too. (This amounts to computing a forward slice). Likewise, find the sources of the variables used to fill the column; follow them back to their code and sources, and follow those variables too. (This amounts to computing a backward slice).
All the elements of the slice are potentially affecting/affected by a change. There may be conditions in the slice-selected code that are clearly outside the conditions expected by your new use case, and you can eliminate that code from consideration. Everything else in the slices you may have inspect/modify to make your change.
Now, your change may affect some other code (e.g., a new place to use the DB column, or combine the value from the DB column with some other value). You'll want to inspect up and downstream slices on the code you change too.
You can apply this process for any change you might make to the code base, not just DB columns.
Manually this is not easy to do in a big code base, and it certainly isn't quick. There is some automation to do for C and C++ code, but not much for other languages.
You can get a bad approximation by running test cases that involve you desired variable or action, and inspecting the test coverage. (Your approximation gets better if you run test cases you are sure does NOT cover your desired variable or action, and eliminating all the code it covers).
Eventually this task cannot be automated or reduced to an algorithm, otherwise there would be a tool to preview refactored changes. The better you wrote code in the beginning, the easier the task.
Let me explain how to reach the answer: isolation is the key. Mapping everything to object properties can help you automate your review.
I can give you an example. If you can manage to map your specific case to the below, it will save your life.
The OR/M change pattern
Like Hibernate or Entity Framework...
A change to a database column may be simply previewed by analysing what code uses a certain object's property. Since all DB columns are mapped to object properties, and assuming no code uses pure SQL, you are good to go for your estimations
This is a very simple pattern for change management.
In order to reduce a file system/network or data file issue to the above pattern you need other software patterns implemented. I mean, if you can reduce a complex scenario to a change in your objects' properties, you can leverage your IDE to detect the changes for you, including code that needs a slight modification to compile or needs to be rewritten at all.
If you want to manage a change in a remote service when you initially write your software, wrap that service in an interface. So you will only have to modify its implementation
If you want to manage a possible change in a data file format (e.g. length of field change in positional format, column reordering), write a service that maps that file to object (like using BeanIO parser)
If you want to manage a possible change in file system paths, design your application to use more runtime variables
If you want to manage a possible change in cryptography algorithms, wrap them in services (e.g. HashService, CryptoService, SignService)
If you do the above, your manual requirements review will be easier. Because the overall task is manual, but can be aided with automated tools. You can try to change the name of a class's property and see its side effects in the compiler
Worst case
Obviously if you need to change the name, type and length of a specific column in a database in a software with plain SQL hardcoded and shattered in multiple places around the code, and worse many tables present similar column namings, plus without project documentation (did I write worst case, right?) of a total of 10000+ classes, you have no other way than manually exploring your project, using find tools but not relying on them.
And if you don't have a test plan, which is the document from which you can hope to originate a software test suite, it will be time to make one.
Just adding my 2 cents. I'm assuming you're working in a production environment so there's got to be some form of unit tests, integration tests and system tests already written.
If yes, then a good way to validate your changes is to run all these tests again and create any new tests which might be necessary.
And to state the obvious, do not integrate your code changes into the main production code base without running these tests.
Yet again changes which worked fine in a test environment may not work in a production environment.
Have some form of source code configuration management system like Subversion, GitHub, CVS etc.
This enables you to roll back your changes
Requirement:
I am trying to develop a language application using antlr4. The language in question is not important. The important thing is that the grammar is very vast (easily >2000 rules!!!). I want to do a number of operations
Extract bunch of informations. These can be call graphs, variable names. constant expressions etc.
Any number of transformations:
if a loop can be expanded, we go ahead and expand it
If we can eliminate dead code we might choose to do that
we might choose to rename all variable names to conform to some norms.
Each of these operations can be applied independent of each other. And after application of these steps I want the rewrite the input as close as possible to the original input.
e.g. So we might want to eliminate loops and rename the variable and then output the result in the original language format.
Questions:
I see a need to build a custom Tree (read AST) for this. So that I can modify the tree with each of the transformations. However when I want to generate the output, I lose the nice abilities of the TokenStreamRewriter. I have to specify how to write each of the nodes of the tree and I lose the original input formatting for the places I didn't do any transformations. Does antlr4 provide a good way to get around this problem?
Is AST the best way to go? Or do I build my own object representation? If so how do I create that object efficiently? Creating object representation is very big pain for such a vast language. But may be better in the long run. Again how do I get back the original formatting?
Is it possible to work just on the parse tree?
Are there similar language applications which do the same thing? If so what strategy do they use?
Any input is welcome.
Thanks in advance.
In general, what you want is called a Program Transformation System (PTS).
PTSs generally have parsers, build ASTs, can prettyprint the ASTs to recover compilable source text. More importantly, they have standard ways to navigate/inspect/modify the ASTs so that you can change them programmatically.
Many offer these capabilities in the form of pattern-matching code fragments written in the surface syntax of the language being transformed; this avoids the need to forever having to know excruciatingly fine details about which nodes are in your AST and how they are related to children. This is incredibly useful when you big complex grammars, as most of our modern (and our legacy languages) all seem to have.
More sophisticated PTSs (very few) provide additional facilities for teasing out the semantics of the source code. It is pretty hard to analyze/transform most code without knowing what scopes individual symbols belong to, or their type, and many other details such as data flow. Full disclosure: I build one of these.
So, I haven't had any luck finding any articles or forum posts that have explained to me how exactly a query language works in conjunction with a general use programming language like c++ or vb. So I guess it wont hurt to ask >.<
Basically, I've been having a hard time understanding what the roles of the query language are ( we'll use SQL as an example for query language and VB6 for norm language) if i'm creating a simple database query that fills a table with normal information (first name, last name, address etc). I somewhat know the steps in setting up a program like this using ado objects for the connection and whatnot, but how do we decide which language of the 2 gets used for certain things ? Does vb6 specifically handle the basics like loops, if else's, declarations of your vars, and SQL specifically handles things like connecting to the database and doing the searching, filtering and sorting ? Is it possible to do certain general use vb6 actions (loops or conditionals) in SQL syntax instead ? Any help would be GREATLY appreciated.
SQL is a language to query a database. SQL is an ISO standard and relational database vendors implement to the ISO standard and then add on their own customizations. For example in SQL Server it is called T-SQL and in Oracle it is called PL-SQL. They both implement ISO standards and so each will have identical queries for a simple select like
select columname from tablename where columnname=1
However, each have different syntax for string functions, date functions, etc....
The ISO SQL standard by design is not a full procedural language with looping, subroutines, ect as in a full procedural language like VB.
However, each vendor has added capabilities to their version to add some of this functionality in.
For example both T-SQL and PL-SQL can "loop" through records using various constructs in their language.
There is also a difference when working with data that many developers are not well in tuned with. That is set based operations vs. procedural based.
Databases can work with procedural constructs but are often more performant with set based. A developer who is not versed in this concept may end up creating a very innefficient query. Here's an example of this discussion.
With any situation you have to weight out the pro's/con's of where it is best to do this work.
I tend to favor using procedural constructs such as loops in the language I am using over SQL. I find it easier to maintain and the language I am using offers more powerful syntax for me to get the job done.
However, I keep both options as a tool in the toolbox. For example, I have written data conversion scripts in SQL and in this case I have used the looping constructs in SQL.
Usually programming language are executed in the client side (app server too), and query languages are executed in the db server, so in the end it depends where you want to put all the work. Sometimes you can put lot of work in the client side by doing all the calculations with the programming language and other times you want to use more the db server and you end up using the query language or even better tsql/psql or whatever.
Relational databases are designed to manage data. In particular, they provide an efficient mechanism for managing memory, disk, and processors for large quantities of data. In addition, relational databases can handle multiple clients, guarantee transactional integrity, security, backups, persistence, and numerous other functions.
In general, if you are using an RDBMS with another language, you want to design the data structure first and then think about the API (applications programming interface) between the two. This is particularly true when you have an app/server relationship.
For a "simple" type of application, which uses a lot of data but with minimal or batch changes to it, you want to move as much of the processing into the database as is reasonable. Here are things you do not want to do:
Use queries to load things into arrays, and then do array manipulations at the language level. SQL provides joins for this.
Load data into an array and do manipulations and summaries on the array. SQL provides aggregations for this.
Save data into a file to have a backup. Databases provide backup mechanisms.
If you data fits into an array or on an Excel spreadsheet, it is often sufficient to get started with the data stored there. Only when you start to expand the needs (multiple clients, security, integration with other data) do the advantages of a database become more apparent.
These are just for guidance and to give you some ideas.
In terms of doing what where, do as much as is sensible in SQL (given it runs on a server) as you can.
So for instance don't do stuff like this (psuedo code)
foreach(row in "Select * from Orders")
if (row[CustomerID] = 876)
Display(row)
Do
foreach(row in "Select * from Orders where CustomerId = 876")
Display(row)
First it's likely Orders is indexed by CustomerID so it will find all 876s order way quicker.
Second to do the first one you just sucked every record in that table into the client's memory space probably across your network.
What language is used is essentially irrelevant, you could invent your own DBMS with it's own language.
It's where you do what processing that matters. It's Rule with exceptions, but the essential idea is let your backend do as much as it can.
Im building a web application which is a process management app. Several different employee types will be shown a list of Tasks to do and as each one completes a task then it is moved on to the next employee to work on.
The Task hierarchy is Batch > Load > Assembly > Part > Task. There are currently 8 rules for determining which Task should be worked on first for each Employee type. These rules apply to size of part, and also how that parts completion will affect the Hierarchy e.g if part A is completed then it completes an entire Batch where as Part B will not as there are still other parts remaining in its Batch to be completed.
Anyway that's the elevator pitch of how the system works. What i am trying to figure out is an efficient, fast and maintainable way of doing this bearing in mind the rules might change and more rules may be added.
Initially I was intending to let the DB (sql 2005) do all the heavy lifting but i have a worry that the more complicated rules will be difficult to implement with a DB. So an alternative is to pull out a list of Tasks into a middle tier and create a Collection of objects and the apply each of the rules to the Collection. I have no doubt that each rule could be translated to T-SQL in isolation but ordering by up to 8 criteria depending on the task type feels like a lot of hassle.
One benefit i can see with the the middle tier approach is that i can create a more loosely restricted system where Task flow can be changed, that would be more difficult in the DB i think.
So what would you guys recommend? Is there a third alternative i haven't thought of ?
EDIT[1] Just to qualify this a bit more, The DB is not expected to change from what i initially develop it in.
It is difficult to determine from the details in the question. However, putting your logic in a business logic (middle) layer will mean that your business rules can continue to use the same code no matter what the back-end database may be. At the moment you specify T-SQL but is it possible that in the future you will move to a non-SQL Server environment?
What platform? .NET 3.5 introduces LinqToSQL that may make this a moot point. You could use a strategy pattern to select from/build an appropriate query based on the task type, then let LINQ do the translation to SQL for you. That way you can build the query in code, but still have it actually executed on the DB.