Reading variable number of columns in pandas - pandas

I have a poorly formatted delimited file, in which the there are errors with the delimiter, so it sometimes appears that there are an inconsistent number of columns in different rows.
When I run
pd.read_csv('patentHeader.txt', sep="|", header=0)
the process dies with this error:
CParserError: Error tokenizing data. C error: Expected 9 fields in line 1034558, saw 15
Is there a way to have pandas skip these lines and continuing? Or put differently, is there some way to make read_csv be more flexible about how many columns it encounters?

Try this.
pd.read_csv('patentHeader.txt', sep="|", header=0, error_bad_lines=False)
error_bad_lines: if False then any lines causing an error will be skipped bad lines, and it will be reported once the reading process is done.

Related

pandas read_csv with multiple separators does not work

I need to be able to parse 2 different types of CSVs with read_csv, the first has ;-separated values and the second has ,-separated values. I need to do this at the same time.
That is, the CSV can have this format:
some;csv;values;here
or this:
some,csv,values,here
or even mixed:
some;csv,values;here
I tried many things like the following regex but nothing worked:
data = pd.read_csv(csv_file, sep=r'[,;]', engine='python')
Am I doing something wrong with the regex?
Instead of reading from a file, I ran your code sample
reading from a string:
txt = '''C1;C2,C3;C4
some;csv,values;here
some1;csv1,values1;here1'''
data = pd.read_csv(io.StringIO(txt), sep='[,;]', engine='python')
and got a proper result:
C1 C2 C3 C4
0 some csv values here
1 some1 csv1 values1 here1
Note that the sep parameter can be even an ordinary (not raw) string,
because it does not contain any backslashes.
So your idea to specify multiple separators as a regex pattern is OK.
The reason that your code failed is probably an "inconsistent" division of
lines into fileds. Maybe you should ensure that each line contains the
same number of commas and semi-colons (at least not too many).
Look thoroughly at your stack trace. There should include some information
about which line of the source file caused the problem.
Then look at the indicated line and correct it.
Edit
To look what happens in a "failure case", I changed the source string to:
txt = '''C1;C2,C3;C4
some;csv,values;here
some1;csv1,values1;here1
some2;csv2,values2;here2,xxxx'''
i.e. I added one line with 5 fields (one too many).
Then execution of the above code results in an error message:
ParserError: Expected 4 fields in line 4, saw 5. ...
Note words in line 4, precisely indicating the offending input line
(line numbers starts from 1).

Pandas to_csv leads to extra lines

The data frame has 906133 rows, such as:
df.shape
(906133, 24)
And I tried to save it as a csv file:
df.to_csv('df.csv',encoding='utf-8-sig',index=False)
Then read it again;
test_lines = pd.read_csv('df.csv')
However, it has now much more rows:
test_lines.shape
(16512050, 24)
After some observation, the extra lines mainly contain a series of dots (...........) or commas (,,,,,,,,,,,,,,,). If I put a sep = '\t' for both saving and reading command, the number of extra lines decreased, but still existed.
I got to a similar problem, however I was constructing the csv from scratch (not importing).
My blank lines disappeared after I used these parameters:
df.to_csv('df.csv', mode='w', encoding='utf-8', index=False, line_terminator='\n')
I blame the line_terminator to be be the culprit but the index parameter was responsible also for some extra separators. I hope this helps also on your side.
As #Vishnudev wrote we do not have your dataset so we cannot test. If you submit, we can confirm.

Unable to read csv file generated by Google Survey using Pandas

I am just a few weeks into Python and data analytic. I am trying to analyze a data set of over 3000 responses generated by Google Survey for my company.
This is how the data set looks like:
A first few rows of the data set
import pandas as pd
data=pd.read_csv('Survey.csv')
I got the error of "ParserError: Error tokenizing data. C error: Expected 6 fields in line 6, saw 7".
My guess is that some questions in the survey allow the users to pick multiple choices, which result in some cell in the csv file that store a list of values, instead of a value. Values in such list are separated by ','. A clear example is the value in the column of 'Paper_Comic_Genre' above.
Is there anyway I can read this csv file into Python then clean it there instead of doing the work in excel?
Thank you so much!
Thank you so much for all of the suggestion. Amara, your solution is just too complex for me to understand :D . I tried it and got an error of "index out of range".
This code finally works for me:
import pandas as pd
data = pd.read_csv('Survey.csv', sep=',', error_bad_lines=False, encoding="ISO-8859-1")
data.info()
I finally figured out that the problem is caused by unicode issues. Regarding the sep =',', I have to do trial and error as I don't know which delimiter (',' or ';' or '\t') to use. I am using Mac thus having no access to notepadd++. Sublime Text does not give a hint.
The result:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5086 entries, 0 to 5085
Data columns (total 43 columns):
if your parsing errors are at the last column, you can use this ad hoc function made by my own.
import re
#native module
def tricky_parsing(number_of_sep,text):
sep=[m.start() for m in re.finditer(',', text)]
#array of each delimiter positions
tricky_list=[]
tricky_list.append(text[:sep[0]])
for i in range(1,number_of_sep):
tricky_list.append(text[sep[i-1]+1:sep[i]])
tricky_list.append(text[sep[number_of_sep-1]+1:])
return tricky_list
#test
tricky_parsing(4,"amara,boudib,test1,test3,,1,2,3")

pandas.errors.ParserError: Error tokenizing data. C error: Expected 7 fields in line 3, saw 11 [duplicate]

I'm trying to use pandas to manipulate a .csv file but I get this error:
pandas.parser.CParserError: Error tokenizing data. C error: Expected 2 fields in line 3, saw 12
I have tried to read the pandas docs, but found nothing.
My code is simple:
path = 'GOOG Key Ratios.csv'
#print(open(path).read())
data = pd.read_csv(path)
How can I resolve this? Should I use the csv module or another language ?
File is from Morningstar
you could also try;
data = pd.read_csv('file1.csv', on_bad_lines='skip')
Do note that this will cause the offending lines to be skipped.
Edit
For Pandas < 1.3.0 try
data = pd.read_csv("file1.csv", error_bad_lines=False)
as per pandas API reference.
It might be an issue with
the delimiters in your data
the first row, as #TomAugspurger noted
To solve it, try specifying the sep and/or header arguments when calling read_csv. For instance,
df = pandas.read_csv(filepath, sep='delimiter', header=None)
In the code above, sep defines your delimiter and header=None tells pandas that your source data has no row for headers / column titles. Thus saith the docs: "If file contains no header row, then you should explicitly pass header=None". In this instance, pandas automatically creates whole-number indices for each field {0,1,2,...}.
According to the docs, the delimiter thing should not be an issue. The docs say that "if sep is None [not specified], will try to automatically determine this." I however have not had good luck with this, including instances with obvious delimiters.
Another solution may be to try auto detect the delimiter
# use the first 2 lines of the file to detect separator
temp_lines = csv_file.readline() + '\n' + csv_file.readline()
dialect = csv.Sniffer().sniff(temp_lines, delimiters=';,')
# remember to go back to the start of the file for the next time it's read
csv_file.seek(0)
df = pd.read_csv(csv_file, sep=dialect.delimiter)
The parser is getting confused by the header of the file. It reads the first row and infers the number of columns from that row. But the first two rows aren't representative of the actual data in the file.
Try it with data = pd.read_csv(path, skiprows=2)
This is definitely an issue of delimiter, as most of the csv CSV are got create using sep='/t' so try to read_csv using the tab character (\t) using separator /t. so, try to open using following code line.
data=pd.read_csv("File_path", sep='\t')
I had this problem, where I was trying to read in a CSV without passing in column names.
df = pd.read_csv(filename, header=None)
I specified the column names in a list beforehand and then pass them into names, and it solved it immediately. If you don't have set column names, you could just create as many placeholder names as the maximum number of columns that might be in your data.
col_names = ["col1", "col2", "col3", ...]
df = pd.read_csv(filename, names=col_names)
Your CSV file might have variable number of columns and read_csv inferred the number of columns from the first few rows. Two ways to solve it in this case:
1) Change the CSV file to have a dummy first line with max number of columns (and specify header=[0])
2) Or use names = list(range(0,N)) where N is the max number of columns.
I had this problem as well but perhaps for a different reason. I had some trailing commas in my CSV that were adding an additional column that pandas was attempting to read. Using the following works but it simply ignores the bad lines:
data = pd.read_csv('file1.csv', error_bad_lines=False)
If you want to keep the lines an ugly kind of hack for handling the errors is to do something like the following:
line = []
expected = []
saw = []
cont = True
while cont == True:
try:
data = pd.read_csv('file1.csv',skiprows=line)
cont = False
except Exception as e:
errortype = e.message.split('.')[0].strip()
if errortype == 'Error tokenizing data':
cerror = e.message.split(':')[1].strip().replace(',','')
nums = [n for n in cerror.split(' ') if str.isdigit(n)]
expected.append(int(nums[0]))
saw.append(int(nums[2]))
line.append(int(nums[1])-1)
else:
cerror = 'Unknown'
print 'Unknown Error - 222'
if line != []:
# Handle the errors however you want
I proceeded to write a script to reinsert the lines into the DataFrame since the bad lines will be given by the variable 'line' in the above code. This can all be avoided by simply using the csv reader. Hopefully the pandas developers can make it easier to deal with this situation in the future.
The following worked for me (I posted this answer, because I specifically had this problem in a Google Colaboratory Notebook):
df = pd.read_csv("/path/foo.csv", delimiter=';', skiprows=0, low_memory=False)
You can try;
data = pd.read_csv('file1.csv', sep='\t')
I came across the same issue. Using pd.read_table() on the same source file seemed to work. I could not trace the reason for this but it was a useful workaround for my case. Perhaps someone more knowledgeable can shed more light on why it worked.
Edit:
I found that this error creeps up when you have some text in your file that does not have the same format as the actual data. This is usually header or footer information (greater than one line, so skip_header doesn't work) which will not be separated by the same number of commas as your actual data (when using read_csv). Using read_table uses a tab as the delimiter which could circumvent the users current error but introduce others.
I usually get around this by reading the extra data into a file then use the read_csv() method.
The exact solution might differ depending on your actual file, but this approach has worked for me in several cases
I've had this problem a few times myself. Almost every time, the reason is that the file I was attempting to open was not a properly saved CSV to begin with. And by "properly", I mean each row had the same number of separators or columns.
Typically it happened because I had opened the CSV in Excel then improperly saved it. Even though the file extension was still .csv, the pure CSV format had been altered.
Any file saved with pandas to_csv will be properly formatted and shouldn't have that issue. But if you open it with another program, it may change the structure.
Hope that helps.
I've had a similar problem while trying to read a tab-delimited table with spaces, commas and quotes:
1115794 4218 "k__Bacteria", "p__Firmicutes", "c__Bacilli", "o__Bacillales", "f__Bacillaceae", ""
1144102 3180 "k__Bacteria", "p__Firmicutes", "c__Bacilli", "o__Bacillales", "f__Bacillaceae", "g__Bacillus", ""
368444 2328 "k__Bacteria", "p__Bacteroidetes", "c__Bacteroidia", "o__Bacteroidales", "f__Bacteroidaceae", "g__Bacteroides", ""
import pandas as pd
# Same error for read_table
counts = pd.read_csv(path_counts, sep='\t', index_col=2, header=None, engine = 'c')
pandas.io.common.CParserError: Error tokenizing data. C error: out of memory
This says it has something to do with C parsing engine (which is the default one). Maybe changing to a python one will change anything
counts = pd.read_table(path_counts, sep='\t', index_col=2, header=None, engine='python')
Segmentation fault (core dumped)
Now that is a different error.
If we go ahead and try to remove spaces from the table, the error from python-engine changes once again:
1115794 4218 "k__Bacteria","p__Firmicutes","c__Bacilli","o__Bacillales","f__Bacillaceae",""
1144102 3180 "k__Bacteria","p__Firmicutes","c__Bacilli","o__Bacillales","f__Bacillaceae","g__Bacillus",""
368444 2328 "k__Bacteria","p__Bacteroidetes","c__Bacteroidia","o__Bacteroidales","f__Bacteroidaceae","g__Bacteroides",""
_csv.Error: ' ' expected after '"'
And it gets clear that pandas was having problems parsing our rows. To parse a table with python engine I needed to remove all spaces and quotes from the table beforehand. Meanwhile C-engine kept crashing even with commas in rows.
To avoid creating a new file with replacements I did this, as my tables are small:
from io import StringIO
with open(path_counts) as f:
input = StringIO(f.read().replace('", ""', '').replace('"', '').replace(', ', ',').replace('\0',''))
counts = pd.read_table(input, sep='\t', index_col=2, header=None, engine='python')
tl;dr
Change parsing engine, try to avoid any non-delimiting quotes/commas/spaces in your data.
Use delimiter in parameter
pd.read_csv(filename, delimiter=",", encoding='utf-8')
It will read.
The dataset that I used had a lot of quote marks (") used extraneous of the formatting. I was able to fix the error by including this parameter for read_csv():
quoting=3 # 3 correlates to csv.QUOTE_NONE for pandas
As far as I can tell, and after taking a look at your file, the problem is that the csv file you're trying to load has multiple tables. There are empty lines, or lines that contain table titles. Try to have a look at this Stackoverflow answer. It shows how to achieve that programmatically.
Another dynamic approach to do that would be to use the csv module, read every single row at a time and make sanity checks/regular expressions, to infer if the row is (title/header/values/blank). You have one more advantage with this approach, that you can split/append/collect your data in python objects as desired.
The easiest of all would be to use pandas function pd.read_clipboard() after manually selecting and copying the table to the clipboard, in case you can open the csv in excel or something.
Irrelevant:
Additionally, irrelevant to your problem, but because no one made mention of this: I had this same issue when loading some datasets such as seeds_dataset.txt from UCI. In my case, the error was occurring because some separators had more whitespaces than a true tab \t. See line 3 in the following for instance
14.38 14.21 0.8951 5.386 3.312 2.462 4.956 1
14.69 14.49 0.8799 5.563 3.259 3.586 5.219 1
14.11 14.1 0.8911 5.42 3.302 2.7 5 1
Therefore, use \t+ in the separator pattern instead of \t.
data = pd.read_csv(path, sep='\t+`, header=None)
Error tokenizing data. C error: Expected 2 fields in line 3, saw 12
The error gives a clue to solve the problem " Expected 2 fields in line 3, saw 12", saw 12 means length of the second row is 12 and first row is 2.
When you have data like the one shown below, if you skip rows then most of the data will be skipped
data = """1,2,3
1,2,3,4
1,2,3,4,5
1,2
1,2,3,4"""
If you dont want to skip any rows do the following
#First lets find the maximum column for all the rows
with open("file_name.csv", 'r') as temp_f:
# get No of columns in each line
col_count = [ len(l.split(",")) for l in temp_f.readlines() ]
### Generate column names (names will be 0, 1, 2, ..., maximum columns - 1)
column_names = [i for i in range(max(col_count))]
import pandas as pd
# inside range set the maximum value you can see in "Expected 4 fields in line 2, saw 8"
# here will be 8
data = pd.read_csv("file_name.csv",header = None,names=column_names )
Use range instead of manually setting names as it will be cumbersome when you have many columns.
Additionally you can fill up the NaN values with 0, if you need to use even data length. Eg. for clustering (k-means)
new_data = data.fillna(0)
For those who are having similar issue with Python 3 on linux OS.
pandas.errors.ParserError: Error tokenizing data. C error: Calling
read(nbytes) on source failed. Try engine='python'.
Try:
df.read_csv('file.csv', encoding='utf8', engine='python')
In my case the separator was not the default "," but Tab.
pd.read_csv(file_name.csv, sep='\\t',lineterminator='\\r', engine='python', header='infer')
Note: "\t" did not work as suggested by some sources. "\\t" was required.
I believe the solutions,
,engine='python'
, error_bad_lines = False
will be good if it is dummy columns and you want to delete it.
In my case, the second row really had more columns and I wanted those columns to be integrated and to have the number of columns = MAX(columns).
Please refer to the solution below that I could not read anywhere:
try:
df_data = pd.read_csv(PATH, header = bl_header, sep = str_sep)
except pd.errors.ParserError as err:
str_find = 'saw '
int_position = int(str(err).find(str_find)) + len(str_find)
str_nbCol = str(err)[int_position:]
l_col = range(int(str_nbCol))
df_data = pd.read_csv(PATH, header = bl_header, sep = str_sep, names = l_col)
Although not the case for this question, this error may also appear with compressed data. Explicitly setting the value for kwarg compression resolved my problem.
result = pandas.read_csv(data_source, compression='gzip')
Simple resolution: Open the csv file in excel & save it with different name file of csv format. Again try importing it spyder, Your problem will be resolved!
The issue is with the delimiter. Find what kind of delimiter is used in your data and specify it like below:
data = pd.read_csv('some_data.csv', sep='\t')
I came across multiple solutions for this issue. Lot's of folks have given the best explanation for the answers also. But for the beginners I think below two methods will be enough :
import pandas as pd
#Method 1
data = pd.read_csv('file1.csv', error_bad_lines=False)
#Note that this will cause the offending lines to be skipped.
#Method 2 using sep
data = pd.read_csv('file1.csv', sep='\t')
Sometimes the problem is not how to use python, but with the raw data.
I got this error message
Error tokenizing data. C error: Expected 18 fields in line 72, saw 19.
It turned out that in the column description there were sometimes commas. This means that the CSV file needs to be cleaned up or another separator used.
An alternative that I have found to be useful in dealing with similar parsing errors uses the CSV module to re-route data into a pandas df. For example:
import csv
import pandas as pd
path = 'C:/FileLocation/'
file = 'filename.csv'
f = open(path+file,'rt')
reader = csv.reader(f)
#once contents are available, I then put them in a list
csv_list = []
for l in reader:
csv_list.append(l)
f.close()
#now pandas has no problem getting into a df
df = pd.DataFrame(csv_list)
I find the CSV module to be a bit more robust to poorly formatted comma separated files and so have had success with this route to address issues like these.
following sequence of commands works (I lose the first line of the data -no header=None present-, but at least it loads):
df = pd.read_csv(filename,
usecols=range(0, 42))
df.columns = ['YR', 'MO', 'DAY', 'HR', 'MIN', 'SEC', 'HUND',
'ERROR', 'RECTYPE', 'LANE', 'SPEED', 'CLASS',
'LENGTH', 'GVW', 'ESAL', 'W1', 'S1', 'W2', 'S2',
'W3', 'S3', 'W4', 'S4', 'W5', 'S5', 'W6', 'S6',
'W7', 'S7', 'W8', 'S8', 'W9', 'S9', 'W10', 'S10',
'W11', 'S11', 'W12', 'S12', 'W13', 'S13', 'W14']
Following does NOT work:
df = pd.read_csv(filename,
names=['YR', 'MO', 'DAY', 'HR', 'MIN', 'SEC', 'HUND',
'ERROR', 'RECTYPE', 'LANE', 'SPEED', 'CLASS',
'LENGTH', 'GVW', 'ESAL', 'W1', 'S1', 'W2', 'S2',
'W3', 'S3', 'W4', 'S4', 'W5', 'S5', 'W6', 'S6',
'W7', 'S7', 'W8', 'S8', 'W9', 'S9', 'W10', 'S10',
'W11', 'S11', 'W12', 'S12', 'W13', 'S13', 'W14'],
usecols=range(0, 42))
CParserError: Error tokenizing data. C error: Expected 53 fields in line 1605634, saw 54
Following does NOT work:
df = pd.read_csv(filename,
header=None)
CParserError: Error tokenizing data. C error: Expected 53 fields in line 1605634, saw 54
Hence, in your problem you have to pass usecols=range(0, 2)
use
pandas.read_csv('CSVFILENAME',header=None,sep=', ')
when trying to read csv data from the link
http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data
I copied the data from the site into my csvfile. It had extra spaces so used sep =', ' and it worked :)
I had a similar case as this and setting
train = pd.read_csv('input.csv' , encoding='latin1',engine='python')
worked
Check if you are loading the csv with the correct separator.
df = pd.read_csv(csvname, header=0, sep=",")
I had a dataset with prexisting row numbers, I used index_col:
pd.read_csv('train.csv', index_col=0)

Ipython kernel dies unexpectedly reading large file

I'm reading in a ~3Gb csv using pandas in an ipython notebook. While reading the file, the notebook unexpectedly gives me an error message saying the kernel appears to have died and will restart.
As per several "big data" workflows in python/pandas, I'm reading the files in as follows:
import pandas as pd
tp = pd.read_csv(file_name_cleaned,chunksize,iterator=True,low_memory=False)
df = pd.concat(tp,ignore_index=True)
My workflow has involved some preprocessing to remove all but alphanumeric characters and a few pieces of punctuation as follows:
with open(file_name,'r') as file1:
with open(file_name_cleaned,'w') as file:2
for line in file1:
if len(line.split(sep_string)) == num_columns:
line = re.sub(r'[^A-Za-z0-9|._]+','',line)
file2.write(line+'\n')
The strange thing is that if I remove the line containing re.sub(), I get a different error - "Expected 209 fileds, saw in line 22236, saw 329" even though I've explicitly checked for the exact number of delimiters. Visual inspection of the line and surrounding lines don't really show me much either.
This process has worked fine for several other files, including ones that are larger so I don't think the size of the file is the issue although I suppose it's possible that that's an oversimplification.
I included the preprocessing because I know from experience that sometimes the data contains strange special characters, I've also gone back and forth between using encoding='utf-8' and encoding='utf-8-sig' in the read_csv() and open() statements to no real avail.
I have several questions - does including the encoding keyword argument cause python to ignore characters outside of those character sets or does it maybe invoke some kind of conversion for those characters? I'm not very familiar with these types of issues. Is it possible that some kind of unexpected character could have slipped through my preprocessing and caused this? Is there another type of issue that I haven't found that could cause this? (I have done research but nothing has been quite right.)
Any help would be much appreciated.
Also, I'm using Anaconda 2.4, with Python 3.5.1, Ipython 4.0.0, and pandas 0.17.0
I'm not sure that this totally answers my questions but I did solve the issue, while it is slower, using engine='python' in pd.read_csv() did the trick.