Join Considerations in Azure SQL Data Warehouse - sql

How should you design your Fact and Dimension tables too speed up joins on the new Azure SQL Data Warehouse?
Would distributing the large fact tables by hash and replicating the smaller dimension tables help speed up the join or should indexing be the main consideration?

Azure SQL Data Warehouse initially offers two table types - Round Robin and Hash Distributed (see the SQL DW Table docs at https://azure.microsoft.com/documentation/articles/sql-data-warehouse-develop-table-design/).
Generally for dimension tables, you'll choose round robin distribution. For fact tables you'll want to choose HASH based distributed table designs.
**Edit: Replicated is now supported too, which could be a useful option for some dimension tables.

Your basic premise of distributing large fact tables by hash and replicating the smaller dimension tables works great in MPP environments like PDW, but as SQL DW doesn't suppose replicated data (yet - hopefully one day), you'll need to use the Round Robin distribution for that.
If you can minimise data movement, then you make some good steps towards improvement the performance of joins. However, having the data on the right server is only half the battle, and you should consider the indexing strategies as well, just as you would in a regular (SMP) SQL Server environment.

Please note that ADW REPLICATE is in public preview but I think it is still buggy. I have several small tables that I have changed to REPLICATE but when I Join to these replicated tables and look at the explain xml plan, I still see data movement steps which should not be in the data is REPLICATED on all nodes. So to investigate why I did a DBCC PDW_SHOWSPACEUSED on several of the replicated tables and instead of seeing the row count being identical across all nodes they differ with some node having a zero row count. I am no expert by any means but I believe their is work to be done, but I cannot find any forums, discussions or feedback pages to report these issues to.

Related

What is a difference between table distribution and table partition in sql?

I am still struggling with identifying how the concept of table distribution in azure sql data warehouse differs from concept of table partition in Sql server?
Definition of both seems to be achieving same results.
Azure DW has up to 60 computing nodes as part of it's MPP architecture. When you store a table on Azure DW you are storing it amongst those nodes. Your tables data is distributed across these nodes (using Hash distribution or Round Robin distribution depending on your needs). You can also choose to have your table (preferably a very small table) replicated across these nodes.
That is distribution. Each node has its own distinct records that only that node worries about when interacting with the data. It's a shared-nothing architecture.
Partitioning is completely divorced from this concept of distribution. When we partition a table we decide which rows belong into which partitions based on some scheme (like partitioning an order table by the order.create_date for instance). A chunk of records for each create_date then gets stored in its own table separate from any other create_date set of records (invisibly behind the scenes).
Partitioning is nice because you may find that you only want to select 10 days worth of orders from your table, so you only need to read against 10 smaller tables, instead of having to scan across years of order data to find the 10 days you are after.
Here's an example from the Microsoft website where horizontal partitioning is done on the name column with two "shards" based on the names alphabetical order:
Table distribution is a concept that is only available on MPP type RDBMSs like Azure DW or Teradata. It's easiest to think of it as a hardware concept that is somewhat divorced (to a degree) from the data. Azure gives you a lot of control here where other MPP databases base distribution on primary keys. Partitioning is available on nearly every RDBMS (MPP or not) and it's easiest to think of it as a storage/software concept that is defined by and dependent on the data in the table.
In the end, they do both work to solve the same problem. But... nearly every RDBMS concept (indexing, disk storage, optimization, partition, distribution, etc) are there to solve the same problem. Namely: "How do I get the exact data I need out as quickly as possible?" When you combine these concepts together to match your data retrieval needs you make your SQL requests CRAZY fast even against monstrously huge data.
Just for fun, allow me to explain it with an analogy.
Suppose there exists one massive book about all history of the world. It has the size of a 42 story building.
Now what if the librarian splits that book into 1 book per year. That makes it much easier to find all information you need for some specific years. Because you can just keep the other books on the shelves.
A small book is easier to carry too.
That's what table partitioning is about. (Reference: Data Partitioning in Azure)
Keeping chunks of data together, based on a key (or set of columns) that is usefull for the majority of the queries and has a nice average distribution.
This can reduce IO because only the relevant chunks need to be accessed.
Now what if the chief librarian unbinds that book. And sends sets of pages to many different libraries.
When we then need certain information, we ask each library to send us copies of the pages we need.
Even better, those librarians could already summarize the information of their pages and then just send only their summaries to one library that collects them for you.
That's what the table distribution is about. (Reference: Table Distribution Guidance in Azure)
To spread out the data over the different nodes.
Conceptually they are the same. The basic idea is that the data will be split across multiple stores. However, the implementation is radically different. Under the covers, Azure SQL Data Warehouse manages and maintains the 70 databases that each table you define is created within. You do nothing beyond define the keys. The distribution is taken care of. For partitioning, you have to define and maintain pretty much everything to get it to work. There's even more to it, but you get the core idea. These are different processes and mechanisms that are, at the macro level, arriving at a similar end point. However, the processes these things support are very different. The distribution assists in increased performance while partitioning is primarily a means of improved data management (rolling windows, etc.). These are very different things with different intents even as they are similar.

Operational database schema to data mart schema, table reduction?

I'm starting to study SQL Server Analysis Services and I'm working my way through the training book, as well as the Developer Training Kit. In both, I find suggestions that the number of tables used in an OLAP database (ideally, star schema) is greatly reduced from the production OLTP database.
From the training kit:
We followed the data dimensional methodology to architect the data mart schema. From some 200 tables in the operational database, the data mart schema contained about 10 dimension tables and 2 fact tables.
From what I understand, the operational databases are usually (somewhat) normalised and the data mart schemas are heavily denormalised. I also believe that denormalising data usually involves adding more tables, not less.
I can't see how you can go from 200 tables to 12, unless you only need to report on a subset of data. And if you do only need to report on a subset of data, why can't you just use the appropriate tables in the operational database (unless there are significant performance gains to be made by using a denormalised star schema)?
Denormalizing is exactly the opposite of Normalizing a database. In a normalized database everything is spit apart into different tables to support concurrent writes to the data. This also has the side effect of generating any given subset of data exactly once (In an ideal 3rd normal form data structrure). A draw back of normalizing is that reads take a lot longer because of the fact that the data is scattered and we need to join tables to make sense of it again (Joins are pretty expensive operations).
When we denormalize, we are taking the data from multiple tables and merging them in to one table. So now we have repeating data in these tables. The repeating data is useful because we don't have to make joins to any other table to get it anymore. Writing to the data store is normally a bad idea because it would mean alot of writes to change all of the data in a table, whereas it would only take one in a normalized database.
OLTP stands for Online Transactional Processing, notice the word Transactional. Transactions are write operations and the OLTP model is optimiized for this. OLAP stands for Online Analytical Processing, Analysis being the keyword meaning lots of reads.
Going from 200 tables to 12 in an OLTP to OLAP process will suprisingly hold nearly all of the data in the OLTP database plus more. The OLTP is unable to record all of the changes over time, but OLAP specializes in this so you get all of your historical data as well as current data.
The star schema is probably the most common for OLAP data stores, the snowflake schema is also pretty common. You should learn about both and how to properly use them. It's just another great tool in your arsenal.
These two books from IBM will answer your questions much more thouroughly and they are free pdf's.
http://www.redbooks.ibm.com/abstracts/sg247138.html
http://www.redbooks.ibm.com/abstracts/sg242238.html

Efficient Ad-hoc SQL OLAP Structure

Over the years I have read a lot of people's opinions on how to get better performance out of their SQL (Microsoft SQL Server, just so we are all on the same page...) queries. However, they all seem to be tightly tied to either a high-performance OLTP setup or a data warehouse OLAP setup (cubes-galore...). However, my situation today is kind of in the middle of the 2, hence my indecision.
I have a general DB structure of [Contacts], [Sites], [SiteContacts] (the junction table of [Sites] and [Contacts]), [SiteTraits], and [ContractTraits]. I have nearly 3 million contacts with about 50 fields (between [Contacts] and [ContactTraits]) relating to just the contact, and about 600 thousand sites with about 150 fields (between [Sites] and [SiteTraits]) relating to just the sites. Basically it’s a pretty big flattened table or view… Most of the columns are int, bit, char(3), or short varchar(s). My problem is that a good portion of these columns are available to be used in ad-hoc queries by the user, and as quickly as possible because the main UI for this will be a website. I know the most common filters, but even with heavy indexing on them I think this will still be a beast… This data is read-only; the data doesn’t change at all during the day and the database will only be refreshed with the latest information during scheduled downtime. So I see this situation like an OLAP database with the read requirements of an OLTP database.
I see 3 options; 1. Break the table into smaller divisible units sub-query everything, 2. make one flat table and really go to town on the indexing 3. Create an OLAP cube and sub-query the rest based on what filter values I don’t put as the cube dimensions, and. I have not done much with OLAP cubes so I frankly don’t even know if that is an option, but from what I’ve done with them in the past I think it might be an option. Also, just to clarify what I mean when I say “sub-query everything” is instead of having a WHERE clause on the outer select, there would be one (if applicable) for each table being brought into the query and then the tables are INNER JOINed, to eliminate a really large Cartesian Product. As for the second option of the one large table, I have heard and seen conflicting results with that approach as it will save on joins but at the same time a table scan takes much longer.
Ideas anyone? Do I need to share what I’m smoking? I think this could turn into a pretty good discussion if everyone puts in their 2 cents. Oh, and feel free to tell me if I’m way off base with the OLAP cube idea if that’s the case, I’m new to that stuff too.
Thanks in advance to any and all opinions and help with this dilemma I’ve found myself in.
You may want to consider this as a relational data warehouse. You could design your relational database tables as a star schema (or, a snowflake schema). This design is very similar to the OLAP cube logical structure, but the physical structure is in the relational database.
In the star schema you would have one or more fact tables, which represent transactions of some sort and is usually associated with a date. I'm not sure what a transaction might be in this case though. The fact may be the association of sites to contacts and the table.
The fact table would reference dimension tables, which describe the fact. Dimensions might be Sites and Contacts. A dimension contains attributes, such as contact name, contact address, etc. If you are familiar with the OLAP cube, then this will be a familiar logical architecture.
It wouldn't be a very big problem to add numerous indexes to your architecture. The database is mostly read only, except for the refresh time. You won't have to worry about read performance while indexes are being updated. So, the architecture can accommodate all indexes that are needed (as long as you can dedicate enough downtime to refresh the data).
I agree with bobs answer: throw an OLAP front end and query through the cube. The reason why this will be a good think is that cubes are highly efficient at querying (often precomputed) aggregates by multiple dimensions and they store the data in a column-oriented format that is more efficient for data analysis.
The relational data underneath the cube will be great for detail drill-ins to find the individual facts that give a certain aggregate value. But querying directly the relational data will always be slow, because those aggregates users are interested in for analysis can only be produced by scanning large amounts of data. OLAP is just better at this.
OLAP/SSAS is efficient for aggregate queries, not as much for granular data in my experience.
What are the most common queries? For single pieces of data or aggregates?
If the granularity of SiteContacts is pretty close to that of Contacts (ie. circa 3 million records - most contacts associated with only a single site), you may get the best performance out of a single table (with plenty of appropriate indexes, obviously; partitioning should also be considered).
On the other hand, if most contacts are associated with many sites, it might be better to stick with something close to your current schema.
OLAP tends to produce the best results on aggregated data - it sounds as though there will be relatively little aggregation carried out on this data.
Star schemas consist of fact tables with dimensions hanging off them - depending on the relationship between Sites and Contacts, it sounds as though you either have one huge dimension table, or two large dimensions with a factless fact table (sounds like an oxymoron, but is covered in Kimball's methodology) linking them.

Practical size limitations for RDBMS

I am working on a project that must store very large datasets and associated reference data. I have never come across a project that required tables quite this large. I have proved that at least one development environment cannot cope at the database tier with the processing required by the complex queries against views that the application layer generates (views with multiple inner and outer joins, grouping, summing and averaging against tables with 90 million rows).
The RDBMS that I have tested against is DB2 on AIX. The dev environment that failed was loaded with 1/20th of the volume that will be processed in production. I am assured that the production hardware is superior to the dev and staging hardware but I just don't believe that it will cope with the sheer volume of data and complexity of queries.
Before the dev environment failed, it was taking in excess of 5 minutes to return a small dataset (several hundred rows) that was produced by a complex query (many joins, lots of grouping, summing and averaging) against the large tables.
My gut feeling is that the db architecture must change so that the aggregations currently provided by the views are performed as part of an off-peak batch process.
Now for my question. I am assured by people who claim to have experience of this sort of thing (which I do not) that my fears are unfounded. Are they? Can a modern RDBMS (SQL Server 2008, Oracle, DB2) cope with the volume and complexity I have described (given an appropriate amount of hardware) or are we in the realm of technologies like Google's BigTable?
I'm hoping for answers from folks who have actually had to work with this sort of volume at a non-theoretical level.
The nature of the data is financial transactions (dates, amounts, geographical locations, businesses) so almost all data types are represented. All the reference data is normalised, hence the multiple joins.
I work with a few SQL Server 2008 databases containing tables with rows numbering in the billions. The only real problems we ran into were those of disk space, backup times, etc. Queries were (and still are) always fast, generally in the < 1 sec range, never more than 15-30 secs even with heavy joins, aggregations and so on.
Relational database systems can definitely handle this kind of load, and if one server or disk starts to strain then most high-end databases have partitioning solutions.
You haven't mentioned anything in your question about how the data is indexed, and 9 times out of 10, when I hear complaints about SQL performance, inadequate/nonexistent indexing turns out to be the problem.
The very first thing you should always be doing when you see a slow query is pull up the execution plan. If you see any full index/table scans, row lookups, etc., that indicates inadequate indexing for your query, or a query that's written so as to be unable to take advantage of covering indexes. Inefficient joins (mainly nested loops) tend to be the second most common culprit and it's often possible to fix that with a query rewrite. But without being able to see the plan, this is all just speculation.
So the basic answer to your question is yes, relational database systems are completely capable of handling this scale, but if you want something more detailed/helpful then you might want to post an example schema / test script, or at least an execution plan for us to look over.
90 million rows should be about 90GB, thus your bottleneck is disk.
If you need these queries rarely, run them as is.
If you need these queries often, you have to split your data and precompute your gouping summing and averaging on the part of your data that doesn't change (or didn't change since last time).
For example if you process historical data for the last N years up to and including today, you could process it one month (or week, day) at a time and store the totals and averages somewhere. Then at query time you only need to reprocess period that includes today.
Some RDBMS give you some control over when views are updated (at select, at source change, offline), if your complicated grouping summing and averaging is in fact simple enough for the database to understand correctly, it could, in theory, update a few rows in the view at every insert/update/delete in your source tables in reasonable time.
It looks like you're calculating the same data over and over again from normalized data. One way to speed up processing in cases like this is to keep SQL with it's nice reporting and relationships and consistency and such, and use a OLAP Cube which is calculated every x amount of minutes. Basically you build a big table of denormalized data on a regular basis which allows quick lookups. The relational data is treated as the master, but the Cube allows quick precalcuated values to be retrieved from the database at any one point.
If that is only 1/20 of your data, you almost surely need to look into more scalable and efficient solutions, such as Google's Big Table. Have a look at NoSQL
I personally think that MongoDB is an awesome inbetween of NoSQL and RDMS. It isn't relational, but it provides a lot more features than a simple document store.
In dimensional (Kimball methodology) models in our data warehouse on SQL Server 2005, we regularly have fact tables with that many rows just in a single month partition.
Some things are instant and some things take a while, it depends on the operation and how many stars are being combined and what's going on.
The same models perform poorly on Teradata, but it is my understanding that if we re-model in 3NF, Teradata parallelization will work a lot better. The Teradata installation is many times more expensive than the SQL Server installation, so it just goes to show how much of a difference modeling and matching your data and processes to the underlying feature set matters.
Without knowing more about your data, and how it's currently modeled and what indexing choices you've made it's hard to say anything more.

What is the best way to partition large tables in SQL Server?

In a recent project the "lead" developer designed a database schema where "larger" tables would be split across two separate databases with a view on the main database which would union the two separate database-tables together. The main database is what the application was driven off of so these tables looked and felt like ordinary tables (except some quirky things around updating). This seemed like a HUGE performance problem. We do see problems with performance around these tables but nothing to make him change his mind about his design. Just wondering what is the best way to do this, or if it is even worth doing?
I don't think that you are really going to gain anything by partitioning the table across multiple databases in a single server. All you have essentially done there is increased the overhead in working with the "table" in the first place by having several instances (i.e. open in two different DBs) of it under a single SQL Server instance.
How large of a dataset do you have? I have a client with a 6 million row table in SQL Server that contains 2 years worth of sales data. They use it transactionally and for reporting without any noticiable speed problems.
Tuning the indexes and choosing the correct clustered index is crucial to performance of course.
If your dataset is really large and you are looking to partition, you will get more bang for your buck partitioning the table across physical servers.
Partitioning is not something to be undertaken lightly as there can be many subtle performance implications.
My first question is are you referring simply to placing larger table objects in separate filegroups (on separate spindles) or are you referring to data partitioning inside of a table object?
I suspect that the situation described is an attempt to have the physical storage of certain large tables on different spindles from the rest of the tables. In this case, adding the extra overhead of separate databases, losing any ability to enforce referential integrity across databases, and the security implications of enabling cross-database ownership chaining does not provide any benefit over using multiple filegroups within a single database. If, as is quite possible, the separate databases you refer to in your question are not even stored on separate spindles but are all stored on the same spindle then you negate even the slight performance benefit you could have gained by physically separating your disk activity and have received absolutely no benefit.
I would suggest instead of using additional databases to hold large tables you look into the Filegroup topic in SQL Server Books Online or for a quick review see this article:
If you are interested in data partitioning (including partitioning into multiple file groups) then I recommend reading articles by Kimberly Tripp, who gave an excellent presentation at the time SQL Server 2005 came out about the improvements available there. A good place to start is this whitepaper
Which version of SQL Server are you using? SQL Server 2005 has partitioned tables, but in 2000 (or 7.0) you needed to use partition views.
Also, what was the reasoning for putting the table partitions in a separate database?
When I've had to partition tables in the past (pre-2005), it's usually by a date column or something similar, with a view over the various partitions. Books Online has a section that talks about how to do this and all of the rules around it. You need to follow the rules to make it work how it's supposed to work.
The key thing to remember is that your partitioning column must be part of the primary key and you want to try to always use that column in any access against the table so that the optimizer can ignore partitions that shouldn't be affected by the query.
Look up "partitioned table" in MSDN and you should be able to find a more complete tutorial for SQL Server 2005 partitioned tables as well as advice on how to set them up for maximum performance.
Are you asking about best practices in terms of database design, or convincing your lead to change his mind? :)
In terms of design... Back in the goode olde days, vertical partitioning was sometimes needed to work around database engine limitations, where the number of columns in a table was a hard limit, like 255 columns. These days the main benefits are purely for performance: putting rarely used columns, or blobs on a separate disk array. But if you're regularly pulling things from both tables it will likely be a loss. It sounds like your lead is suffering from a case of premature optimisation.
In terms of telling your lead is wrong... that requires diplomacy. If he's aware of mutterings of discontent in terms of performance, a benchmark is probably the best way to show the difference.
Create a new physical table somewhere with 'create table t1 as select * from view1' and then run some lengthy batch with the vertically partitioned table and your new table. If it's as bad as you say, the difference should be evident.
But this too may be premature optimisation. Find out what the end-users think of the performance. If the performance is good enough, for some definition of good, then don't fix what ain't broke.
There is a definite benefit for table partitioning (regardless whether it's on same or different filegroups /disks). If the partition column is correctly selected, you'll realize that your queries will hit only the required partition. So imagine if you have 100 million records (I've partitioned tables much bigger than that - about 20+ Billion rows) and if for the most part, more than 70% of your data access is only a certain category or timeline or type of data then it helps to keep the most accessed data in a separate partition. Plus you can align the partition with separate file groups with various type of disks (SATA, Fiber channel, SSDs) so that the most accessed/busy data are on the fastest storage and the least/rarely accessed are virtually on slower disks.
Although, in SQL Server there's limited partitioning ability, unlike Oracle. You can choose only one column for partitioning (even in SQL 2008). So you've to choose a column wisely where that column also is part of most of your frequent queries. For the most part, people find it easy to choose to partition by a date column. However although it seems logical to partition that way, if your queries do not have that column as part of the condition, you won't be gaining sufficient benefits from partitioning (in other words, your query will hit all the partition regardless).
It's much easier to partition for data warehouse/data mining type databases than OLTP as most DW database queries are limited by time period.
That's why these days due to the volume of data being handled by databases, it's wise to design the application in such a way that ever query is limited by some broader group such as time, geographical location or such so that when such columns are chosen for partitioning you'll gain maximum benefits.
I would disagree with the assumption that nothing can be gained by partitioning.
If the partition data is physically and logically aligned, then the potential IO of queries should be dramatically reduced.
For example, We have a table which has the batch field as an INT representing an INT.
If we partition the data by this field and then re-run a query for a particular batch, we should be able to run set statistics io ON before and after partitioning and see a reduction in IO,
If we have a million rows per partition and each partition is written to a separate device. The query should be able to eliminate the nonessential partitions.
I've not done a lot of partitioning on SQL Server, but I do have experience of partitioning on Sybase ASE, and this is known as partition eliminiation. When I have time I'm going to test out the scenario on a SQL Server 2005 machine.