In general, how expensive is calling an external program? - optimization

I know external programs can be called, but I don't know how expensive it is compared to, say, calling a subroutine. By the cost of calling, I mean the overhead of starting the program, rather than the cost of executing the program's code itself. I know the cost probably varies greatly depending on the language and operating system used and other factors, but I would appreciate some ballpark estimates.
I am asking to see the plausibility of emulating code self-modification on languages that don't allow code self-modification by making processes modify other processes

Like I said in my comment above, perhaps it would be best if you simply tried it and did some benchmarking. I'd expect this to depend primarily on the OS you're using.
That being said, starting a new process generally is many orders of magnitude slower than calling a subroutine (I'm tempted to say something like "at least a million times slower", but I couldn't back up such a claim with any measurements).
Possible reasons why starting a process is much slower:
Disk I/O (the OS has to load the process image file into memory) — this is going to be a big factor because I/O is many orders of magnitude slower than a simple CPU jump/call instruction.
To give you a rough idea of the orders of magnitude involved, let me quote this 2011 blog article (which is about memory access vs HDD access, not CPU jump instruction vs HDD access):
"Disk latency is around 13ms, but it depends on the quality and rotational speed of the hard drive. RAM latency is around 83 nanoseconds. How big is the difference? If RAM was an F-18 Hornet with a max speed of 1,190 mph (more than 1.5x the speed of sound), disk access speed is a banana slug with a top speed of 0.007 mph."
You do the math.
allocations of memory & other kernel data structures
laying out the process image in memory & performing relocations
creation of a new OS thread
context switches
etc.
Apparently, all of the above points mean that your OS is likely to perform lots of internal subroutine calls to start a new process, so doing just one subroutine call yourself instead of having the OS do hundreds of these is bound to be comparatively super-cheap.

Related

Scheduling on multiple cores with each list in each processor vs one list that all processes share

I have a question about how scheduling is done. I know that when a system has multiple CPUs scheduling is usually done on a per processor bases. Each processor runs its own scheduler accessing a ready list of only those processes that are running on it.
So what would be the pros and cons when compared to an approach where there is a single ready list that all processors share?
Like what issues are there when assigning processes to processors and what issues might be caused if a process always lives on one processor? In terms of the mutex locking of data structures and time spent waiting on for the locks are there any issues to that?
Generally there is one, giant problem when it comes to multi-core CPU systems - cache coherency.
What does cache coherency mean?
Access to main memory is hard. Depending on the memory frequency, it can take between a few thousand to a few million cycles to access some data in RAM - that's a whole lot of time the CPU is doing no useful work. It'd be significantly better if we minimized this time as much as possible, but the hardware required to do this is expensive, and typically must be in very close proximity to the CPU itself (we're talking within a few millimeters of the core).
This is where the cache comes in. The cache keeps a small subset of main memory in close proximity to the core, allowing accesses to this memory to be several orders of magnitude faster than main memory. For reading this is a simple process - if the memory is in the cache, read from cache, otherwise read from main memory.
Writing is a bit more tricky. Writing to the cache is fast, but now main memory still holds the original value. We can update that memory, but that takes a while, sometimes even longer than reading depending on the memory type and board layout. How do we minimize this as well?
The most common way to do so is with a write-back cache, which, when written to, will flush the data contained in the cache back to main memory at some later point when the CPU is idle or otherwise not doing something. Depending on the CPU architecture, this could be done during idle conditions, or interleaved with CPU instructions, or on a timer (this is up to the designer/fabricator of the CPU).
Why is this a problem?
In a single core system, there is only one path for reads and writes to take - they must go through the cache on their way to main memory, meaning the programs running on the CPU only see what they expect - if they read a value, modified it, then read it back, it would be changed.
In a multi-core system, however, there are multiple paths for data to take when going back to main memory, depending on the CPU that issued the read or write. this presents a problem with write-back caching, since that "later time" introduces a gap in which one CPU might read memory that hasn't yet been updated.
Imagine a dual core system. A job starts on CPU 0 and reads a memory block. Since the memory block isn't in CPU 0's cache, it's read from main memory. Later, the job writes to that memory. Since the cache is write-back, that write will be made to CPU 0's cache and flushed back to main memory later. If CPU 1 then attempts to read that same memory, CPU 1 will attempt to read from main memory again, since it isn't in the cache of CPU 1. But the modification from CPU 0 hasn't left CPU 0's cache yet, so the data you get back is not valid - your modification hasn't gone through yet. Your program could now break in subtle, unpredictable, and potentially devastating ways.
Because of this, cache synchronization is done to alleviate this. Application IDs, address monitoring, and other hardware mechanisms exist to synchronize the caches between multiple CPUs. All of these methods have one common problem - they all force the CPU to take time doing bookkeeping rather than actual, useful computations.
The best method of avoiding this is actually keeping processes on one processor as much as possible. If the process doesn't migrate between CPUs, you don't need to keep the caches synchronized, as the other CPUs won't be accessing that memory at the same time (unless the memory is shared between multiple processes, but we'll not go into that here).
Now we come to the issue of how to design our scheduler, and the three main problems there - avoiding process migration, maximizing CPU utilization, and scalability.
Single Queue Multiprocessor scheduling (SQMS)
Single Queue Multiprocessor schedulers are what you suggested - one queue containing available processes, and each core accesses the queue to get the next job to run. This is fairly simple to implement, but has a couple of major drawbacks - it can cause a whole lot of process migration, and does not scale well to larger systems with more cores.
Imagine a system with four cores and five jobs, each of which takes about the same amount of time to run, and each of which is rescheduled when completed. On the first run through, CPU 0 takes job A, CPU 1 takes B, CPU 2 takes C, and CPU 3 takes D, while E is left on the queue. Let's then say CPU 0 finishes job A, puts it on the back of the shared queue, and looks for another job to do. E is currently at the front of the queue, to CPU 0 takes E, and goes on. Now, CPU 1 finishes job B, puts B on the back of the queue, and looks for the next job. It now sees A, and starts running A. But since A was on CPU 0 before, CPU 1 now needs to sync its cache with CPU 0, resulting in lost time for both CPU 0 and CPU 1. In addition, if two CPUs both finish their operations at the same time, they both need to write to the shared list, which has to be done sequentially or the list will get corrupted (just like in multi-threading). This requires that one of the two CPUs wait for the other to finish their writes, and sync their cache back to main memory, since the list is in shared memory! This problem gets worse and worse the more CPUs you add, resulting in major problems with large servers (where there can be 16 or even 32 CPU cores), and being completely unusable on supercomputers (some of which have upwards of 1000 cores).
Multi-queue Multiprocessor Scheduling (MQMS)
Multi-queue multiprocessor schedulers have a single queue per CPU core, ensuring that all local core scheduling can be done without having to take a shared lock or synchronize the cache. This allows for systems with hundreds of cores to operate without interfering with one another at every scheduling interval, which can happen hundreds of times a second.
The main issue with MQMS comes from CPU Utilization, where one or more CPU cores is doing the majority of the work, and scheduling fairness, where one of the processes on the computer is being scheduled more often than any other process with the same priority.
CPU Utilization is the biggest issue - no CPU should ever be idle if a job is scheduled. However, if all CPUs are busy, so we schedule a job to a random CPU, and a different CPU ends up becoming idle, it should "steal" the scheduled job from the original CPU to ensure every CPU is doing real work. Doing so, however, requires that we lock both CPU cores and potentially sync the cache, which may degrade any speedup we could get by stealing the scheduled job.
In conclusion
Both methods exist in the wild - Linux actually has three different mainstream scheduler algorithms, one of which is an SQMS. The choice of scheduler really depends on the way the scheduler is implemented, the hardware you plan to run it on, and the types of jobs you intend to run. If you know you only have two or four cores to run jobs, SQMS is likely perfectly adequate. If you're running a supercomputer where overhead is a major concern, then an MQMS might be the way to go. For a desktop user - just trust the distro, whether that's a Linux OS, Mac, or Windows. Generally, the programmers for the operating system you've got have done their homework on exactly what scheduler will be the best option for the typical use case of their system.
This whitepaper describes the differences between the two types of scheduling algorithms in place.

Which takes longer time? Switching between the user & kernel modes or switching between two processes?

Which takes longer time?
Switching between the user & kernel modes (or) switching between two processes?
Please explain the reason too.
EDIT : I do know that whenever there is a context switch, it takes some time for the dispatcher to save the status of the previous process in its PCB, and then reload the next process from its corresponding PCB. And for switching between the user and the kernel modes, I know that the mode bit has to be changed. Isn't it all, or is there more to it?
Switching between processes (given you actually switch, not run them in parallel) by an order of oh-my-god.
Trapping from userspace to kernelspace used to be done with a processor interrupt earlier. Around 2005 (don't remember the kernel version), and after a discussion on the mailing list where someone found that trapping was slower (in absolute measures!) on a high-end xeon processor than on an earlier Pentium II or III (again, my memory), they implemented it with a new cpu instruction sysenter (which had actually existed since Pentium Pro I think). This is done in the Virtual Dynamic Shared Object (vdso) page in each process (cat /proc/pid/maps to find it) IIRC.
So, nowadays, a kernel trap is basically just a couple of cpu instructions, hence rather few cycles, compared to tenths or hundreds of thousands when using an interrupt (which is really slow on modern CPU's).
A context switch between processes is heavy. It means storing all processor state (registers, etc) to RAM (at a magic memory location in the user process space actually, guess where!), in practice dirtying all cached memory in the cpu, and reading back the process state for the new process. It will (likely) have nothing still in the cpu cache from last time it ran, so each memory read will be a cache miss, and needed to be read from RAM. This is rather slow. When I was at the university, I "invented" (well, I did come up with the idea, knowing that there is plenty of dye in a CPU, but not enough cool if it's constantly powered) a cache that was infinite size although unpowered when unused (only used on context switches i.e.) in the CPU, and implemented this in Simics. Implemented support for this magic cache I called CARD (Context-switch Active, Run-time Drowsy) in Linux, and benchmarked rather heavily. I found that it could speed-up a Linux machine with lots of heavy processes sharing the same core with about 5%. This was at relatively short (low-latency) process time slices, though.
Anyway. A context switch is still pretty heavy, while a kernel trap is basically free.
Answer to at which memory location in user-space, for each process:
At address zero. Yep, the null pointer! You can't read from this entire page from user-space anyway :) This was back in 2005, but it's probably the same now unless the CPU state information has grown larger than a page size, in which case they might have changed the implementation.

Slow Parallel programming - MPI, VB.NET and FORTRAN

I'm working on parallelizing a software which simulates transport and flow process in the unsaturated soil zone. The software consists of a VB.NET user interface, and a FORTRAN DLL kernel to do the calculations.
I parallelized the software by using the package MPI.NET in the VB.NET part. When the program is started with a number of processes, all of them but the master process go into a wait function, while the master process takes care of the interaction of the software with the user. When all the data required for the simulation is entered, the master process enters the FORTRAN DLL, and calls the other processes. These jump to the starting point of the function in the DLL, and together all the processes solve a linear system of equations for about 10-20 times (the original partial differential equation is nonlinear, therefore these iterations in order to gain accuracy in the solution). When the solution is computed, all the processes go back to VB.NET, This is done for all the timesteps of the simulation. When all steps are computed, the master process continues with the user interaction, while the other processes go back
into the wait function, until they are called again by the master process.
The thing is that this program runs much slower than the original, sequential version of it. Now there might be a number of reasons for this. I used the PETSc library in the FORTRAN DLL to solve the system of equations, and I think I have configured it quite well. My question is if at some point in the architecture I described there could be a point or two which could cause a significant slowdown if not handled correctly. I'm not sure f.e. if the subsequent calls of DLL function can cost a lot of time.
My system is a Intel Xeon 3470 processor with 8GB RAM. The systems I tried to solve had up to 120.000 unknowns, which I know is at the very lower bound of what should be calculated in parallel, but at least with the 120.000 matrix I would have expected a better performance than I did measure.
Thanks in advance for your thoughts,
Martin
I would say that 120,000 degrees of freedom and 10-20 iterations is not that large a problem. Million degree of freedom problems were done when I did finite element analysis for a living, and that was 16 years ago.
Is it possible to solve it using an in-memory solver, without parallelization, with 8GB of RAM? That would certainly be your benchmark. Is that what you're comparing your parallel results to?
Are the parallel processes running on different processors or different machines? Parallelization doesn't buy you anything if everything is done on a single processor. You have to context switch and time slice processes, and there's overhead associated with MPI to communicate between processes. I would expect a parallel solution on a single processor to run more slowly than a single thread, in-memory solution.
If you have multiple processes, then I'd say it's a matter of tuning. I'd plot performance versus number of parallel processes. If there's a speedup, you should find that it improves with more processes until you reach a saturation point, beyond which the overhead is greater than the benefit.
If you have multiple cores, when you run your program sequentially can you see that only one or a few processor are utilized?
If the load in the sequential case is high and evenly distributed over all cores then IMHO there is no need to parallelize your program.
My system has a Xeon 3470, which is a quadcore processor. So the computations are all done on these 4 on 1 machine. I don't run the program with more than 4 processes of course.The old solver that the software had was sequential of course, and that still runs faster than the parallel version. When I plot number of processes against runtime, I see that runtime even increases a little bit with smaller models - but that is to be expected because of the communication overhead.
In both the sequential and the parallel case all 4 processors are utilized, and the load balance between them is acceptable.
Like I said, I know that the models I've tested so far are not ideal to talk about parallel performance. I was just wondering if besides the communication overhead due to MPI there could still be another point that could lead to the slowdown of the program.

Meaning of bandwidth in CUDA and why it is important

The CUDA programming guide states that
"Bandwidth is one of the most important gating factors for performance. Almost all changes to code should be made in the context of how they affect bandwidth."
It goes on to calculate theoretical bandwidth which is in the order of hundreds of gigabytes per second. I am at a loss as to why how many bytes one can read/write to global memory is a reflection of how well optimised a kernel is.
If I have a kernel which does intensive computation on data stored in shared memory and/or registers, with only a single read at the start and write out at the end from and to global memory, surely the effective bandwidth will be small, while the kernel itself may be very efficient.
Could any one further explain bandwidth in this context?
Thanks
most all nontrivial computational kernels, in CPU and GPU land, memory bound.
GPU has very high computational intensity and throughput, but access to main memory is very slow and has high latency, few hundred cycles per read/store versus four cycles for mmany arithmetic operations.
It sounds like your kernel is computation bound, so your luck. However you still have to watch out for shared memory bank conflict, which can serialize portions of code unexpectedly.
Most kernels are memory bound so maximising memory throughput is critical. If you're lucky enough to have a compute bound kernel then optimizing for computation is generally easier. You do need to look out for divergence and you should still ensure you have enough threads to hide memory latency.
Check out the Advanced CUDA C presentation for more information, including some tips for how to compare your realised performance with theoretical performance. The CUDA Best Practices Gude also has some good information, it's available as part of the CUDA toolkit (download from the NVIDIA site).
Typically kernels are fairly small and simple and perform the same operation on a lot of data. You might have a bunch of kernels that you invoke in sequence to perform some more complex operation (think of it as a processing pipeline). Obviously the throughput of your pipeline will depend both on how efficient your kernels are and whether you are limited by memory bandwidth in any way.

Optimizing for ARM: Why different CPUs affects different algorithms differently (and drastically)

I was doing some benchmarks for the performance of code on Windows mobile devices, and noticed that some algorithms were doing significantly better on some hosts, and significantly worse on others. Of course, taking into account the difference in clock speeds.
The statistics for reference (all results are generated from the same binary, compiled by Visual Studio 2005 targeting ARMv4):
Intel XScale PXA270
Algorithm A: 22642 ms
Algorithm B: 29271 ms
ARM1136EJ-S core (embedded in a MSM7201A chip)
Algorithm A: 24874 ms
Algorithm B: 29504 ms
ARM926EJ-S core (embedded in an OMAP 850 chip)
Algorithm A: 70215 ms
Algorithm B: 31652 ms (!)
I checked out floating point as a possible cause, and while algorithm B does use floating point code, it does not use it from the inner loop, and none of the cores seem to have a FPU.
So my question is, what mechanic may be causing this difference, preferrably with suggestions on how to fix/avoid the bottleneck in question.
Thanks in advance.
One possible cause is that the 926 has a shorter pipeline (5 cycles vs. 8 cycles for the 1136, iirc), so branch mispredictions are less costly on the 926.
That said, there are a lot of architectural differences between those processors, too many to say for sure why you see this effect without knowing something about the instructions that you're actually executing.
Clock speed is only one factor. Bus width and latency are big if not bigger factors. Cache is a factor. Speed of the media the program is run from if run from media and not memory.
Is this test using any shared libraries at all at any point in the test or is it all internal code? Fetching shared libraries on media that will vary from platform to platform (even if it is say the same sd card).
Is this the same algorithm compiled separately for each platform or the same binary? You can and will see some compiler induced variation as well. 50% faster and slower can easily come from the same compiler on the same platform by varying compiler settings. If possible you want to execute the same binary, and insure that no shared libraries are used in the loop under test. If not the same binary disassemble the loop under test for each platform and insure that there are no variations other than register selection.
From the data you have presented, its difficult to point the exact problem, but we can share some of the prior experience
Cache setting (check if all the
processors has the same CACHE
setting)
You need to check both D-Cache and I-Cache
For analysis,
Break down your code further, not just as algorithm but at a block level, and try to understand the block that causes the bottle-neck. After you find the block that causes the bottle-neck, try to disassemble the block's source code, and check the assembly. It may help.
Looks like the problem is in cache settings or something memory-related (maybe I-Cache "overflow").
Pipeline stalls, branch miss-predictions usually give less significant differences.
You can try to count some basic operations, executed in each algorithm, for example:
number of "easy" arithmetical/bitwise ops (+-|^&) and shifts by constant
number of shifts by variable
number of multiplications
number of "hard" arithmetics operations (divides, floating point ops)
number of aligned memory reads (32bit)
number of byte memory reads (8bit) (it's slower than 32bit)
number of aligned memory writes (32bit)
number of byte memory writes (8bit)
number of branches
something else, don't remember more :)
And you'll get info, that things get 926 much slower. After this you can check suspicious blocks, making using of them more or less intensive. And you'll get the answer.
Furthermore, it's much better to enable assembly listing generation in VS and use it (but not your high-level source code) as base for research.
p.s.: maybe the problem is in OS/software/firmware? Did you testing on clean system? OS is the same on all devices?