using Diab, dcc 5.9.4 to compile a windows executable - embedded

I'm doing some experiments with an evaluation version of the WindRiver dcc diab compiler. I would like to do some testing on my Windows PC.
However I think I have the wrong target setup.
I've got as far as using the 'dctrl -t' command to get the list of target architectures, but selecting options so far hasn't produced anything i can run on windows.
I'm simply doing:
dcc main.c -o main.exe
Am I missing a step?
do I have the wrong target?
or is it simply not possible to create windows binaries?

I believe that the Diab compiler targets a free-standing environment, so would not produce a Windows executable. Moreover x86 is not a supported target processor in any case; see the product brief.
The compiler is intended for use with VxWorks, though can be separately licensed. The toolchain includes an instruction-set simulator for executing target code in a simulated environment, and if you are using VxWorks, that includes a VxWorks simulator.
If you want to build your code as a native Windows application; you will have to use a Windows targeted compiler. I suggest MinGW/GCC since WindRiver support both their own WindRiver/Diab compiler and GCC for Vxworks development, and they share a great deal of commonality with respect to compiler switches and extension syntax.

Related

Provide multiple toolchain options in CMake

I have an embedded project for ARM platform, specifically aarch64.
Up until now I was using Make. I recently set up CMake with no particular issues.
I moved to CMake because I was under the impression it was a more modern build tool that would have allowed a smarter configuration.
For example, I can compile my project using different toolchains (aarch64-elf-gcc-linaro, aarch64-linux-gnu-gcc,...) and I would like CMake to try if any of those are installed on the system and use whichever is found first by default.
Is this possible (or meant to)? I'd expect it to be an easy feat for the tool, but after searching for a while I can't seem to find the right track.
Yes, you can make your CMake project to search for available tool-chains installed in your OS, choose one and compile your project. I also write a CMake program for ARM embedded project, because now it is universal transferable between different OS system Windows and Unix. On Linux there is ARM ToolChain installed and on Windows there is Keil-MDK. If you have different tool-chains to choose between, you can write CMake script which will find paths with command like find_path() and then call correct "toolchianxx.cmake" script with right compiler flags for chosen compiler.
In your particular problem just use find_path commands and use hits to find installed compilers in "pre-set" known paths.

Problems with cygwin build dll for use in windows app

I use Cygwin to build source code to DLL used by windows app.
When I use GCC core / GCC g++, the app crash if it calls function (which includes printf or malloc) in DLL.
When I use Mingw64-x86_64-gcc-core / Mingw64-x86_64-gcc-g++ it reports error like sys/socket.h:No such file or directory.
Can anyone explain how to do it? Thanks.
The first problem is due to the tentative to build a stand alone DLL (not depending on cygwin1.dll) using cygwin only specific tools.
You have collision between multiple malloc and other C library call present in cygwin1.dll.
The second is due to the fact that sys/socket.h does not exist on Windows
see for possible solution:
Using sys/socket.h functions on windows
So you need to define what is your target : Cygwin/Posix or Windows and choose programming style and tools accordingly, you can not mix.

Compiling for VxWorks

I realize this may be a really dumb question. Please humor me:
True or False: The only way to compile a program to run on a VxWorks platform is to purchase a development environment like Tornado or Workbench from WindRiver.
(I'm looking for an free/open-source solution to compile for a VxWorks platform.)
Outside of an academic license (which would use a VxWorks installation anyway), there is not any way to legally compile your code for a vxWorks platform.
Technically, you CAN obtain the GNU toolchain used to compile code for VxWorks.
The issue you will run into is that you won't have access to the header files necessary for compiling your code or the libraries to link against.
One can use a generic GNU cross-compiler to generate ELF files, and load them onto a running VxWorks system using the ld command. However, I don't recommend it for anything beyond proof-of-concept or initial experimentation -- the VxWorks libraries and Wind River's superb documentation of them are both necessary.
On the development host:
powerpc-elf-eabi-gcc -c foo.c
Then on the target-resident shell, that has mounted a filesystem from the development host (for example, over NFS):
-> ld < foo.o
-> main()
(Where the function main() comes from foo.c)
Since VxWorks is proprietary, they made it so you need their tools (Workbench/Tornado), which they supply, in order to develop for their OS.

How to use Valgrind on an Embedded System Project that runs GHS compiled code on MIPS?

We have a storage controller that is used as target, it runs MIPS and has some additional hardware that goes with it. Development is done with Green Hills Compiler. Can we use VALGRIND to perform analysis on the code base ?
If your target is not running Linux or an OS with a POSIX API it is unlikely that you will be able to build and execute Valgrind natively. One possibility is to build your embedded code on Linux in a suitable test harness and execute tests on that.

How to set up a dev. environment for ARM board AT91SAM7-EX256 under x86 Linux?

I am a newbie to embedded developement, as figure shown. I have a small ARM board, AT91SAM7-EX256. I have also a JTAG programmer dongle, too. I am using Linux (Ubuntu x86_32) on my notebook and desktop machine. I'm using CodeSourcery Lite for cross-compiling to ARM-Linux.
Am I right that I can't use this Linux-target cross-compiler to make binary or hex files for the small ARM board (it comes without any operating system)? Should I use the version called ARM EABI instead?
As I see, it's a "generic" ARM compiler. I've read some docs, and there're lot of options to specify the processor type and instruction set (thumb, etc.), there will be no problem with it. But how can I tell the compiler, how should the image (bin/hex) looks like for the specific board (startup, code/data blocks etc.)? (In assemblers, there're the org and load directives for it.)
What software do I need to capture some debug messages from the board on my PC? I don't want to on-board debugging, I just need some detailed run-time signal, more than just blinking leds.
I have an option to use MS-Windows, I can get a dedicated machine for it. Do you recommend it, is it much easier?
Can I use inline assembly somehow in my C code? I dunno anything about that. Can I use C++ or just C?
I have also a question, which don't need to answer: are there really 4096 kind of GNU compilers and cross-compilers (from Linux_x86_32 -> Linux_x86_32, Linux_x86_32 -> Linux_ARM, OSX -> Linux_ARM, PPC_Linux -> OSX) and 16 different GNU compiler sources (as many target platforms/processors exists) around? The signs says "yes", but I can't believe it. Correct me, and show me the GNU compiler which can produce object file for any platform/processor, and the universal linker which can produce executable for any platform.
While Windows is not a "better" platform do this kind of embedded development on, it may be easier to start with since you can get a pre-built environment to work with. For example, Yagarto (which I would recommend).
Setting up an embedded development environment on Linux can require a considerable amount of knowledge, but it's not impossible.
To answer your questions:
Your Linux cross-compiler comes with libraries to build executables for a Linux environment. You have hinted that you want to build a bare-metal executable for this board. While you can do this with your compiler, it will just confuse things. I recommend building a baremetal cross-compiler. Since you're building your own baremetal executable (and thus you are the operating system, the ABI doesn't matter since you're generating all of the code and not interoperating with other previously built code.
There are several versions of the ARM instruction set (and Thumb). You need to generate code for your particular processor. If you generate the code for a newer version of the instruction set, you will likely generate code which generates a reserved instruction exception. Most prebuilt gcc cross-compiler toolchains for ARM are "multilib" and will build for a variety of architectures in both ARM and Thumb.
Not sure exactly what you're looking for here. This is a bare metal platform. You can use the debugger channel to send messages if you're debugging on target, or you'll need to build your own communication channel into the firmware you write (i.e. uart support).
See above.
Yes. See here for details on gcc's extended inline assembly syntax. You can do this in C++ and C. You can also simply link pure assembly files.
There is no universal gcc compiler / linker. You need a uniquely built compiler for each host / target combination you use.
Finally, please take a look at Atmel's documentation. They have a wealth of information on developing for this target as well as a board package with the needed linker directives and example programs. Note of course the package is for Atmel's own eval board, but it will get you started.
http://sam7stuff.blogspot.com/
I use either of the codesourcery lite versions. But I have no use for the gcc library nor a C library, I just need a compiler.
In the gcc 3 days newlib was great, modify two files worth of system support (simple open, close, read, putc type stuff) and you could compile just about anything, but with gcc 4.x you cannot even go back and cross compile gcc 3.x, you have to install an old linux distro in a virtual machine.
To get the gcc library yes you probably want to use the eabi version not the version with linux gnueabi in the file names.
You might also consider llvm (if you dont need a C library, and you will still need binutils), hmm, I wonder if newlib compiles with llvm.
I prefer to avoid getting trapped in sandboxes, learn the tools and how to manipulate the linker, etc to build your binaries.