servo motor s curve motion - embedded

I am trying to control a Industrial AC Servo motor using my XE166 device.
The controller interfaces with the servo controller using the PULSE and DIRECTION control.
To achieve a jerk-free motion I have been trying to create a S Curve motion profile (motor speed v/s time).
Calculating instantaneous speed is no problem as I know the distance moved by the motor per pulse, and the pulse duration.
I need to understand how to arrive at a mathematical equation that I could use, that would tell me what should be the nth pulses duration to have the speed profile as an S-Curve.
Since these must be a common requirement in any domain requiring motion control (Robotics, CNC, industrial) there must be some standard reference to do it

Step period is the time difference between two positions one step apart on the motion curve. If the position is defined by X(T), then the step time requires the inverse function T(X), and any given step period is P = T(X+1) - T(X). On a microcontroller with limited processing power, this is usually solved with an approximation - for 2nd order constant acceleration motion, Atmel has a fantastic example using a Taylor series approximation for inter-step time (Application note AVR446).
Another solution which works for higher order curves involves root solving. To solve T(x0), let U(T) = X(T) - x0 and solve for U(T) = 0.
For a constant acceleration curve, the quadratic formula woks great (but requires a square root operation - usually expensive on microcontrollers). For jerk-limited motion (a 3rd degree polynomial minimum) the roots can be found with an iterative root solving algorithm.

Related

Calibration of magnetometer attached to a vehicle as Figure 8 calibration isn't possible in such scrnaroo

I was trying to find a way to calibrate a magnetometer attached to a vehicle as Figure 8 method of calibration is not really posible on vehicle.
Also removing magnetomer calibrating and fixing won't give exact results as fixing it back to vehicle introduces more hard iron distortion as it was calibrated without the vehicle environment.
My device also has a accelerometer and gps. Can I use accelerometer or gps data (this are calibrated) to automatically calibrate the magnetometer
Given that you are not happy with the results of off-vehicle calibration, I doubt that accelerometer and GPS data will help you a lot unless measured many times to average the noise (although technically it really depends on the precision of the sensors, so if you have 0.001% accelerometer you might get a very good data out of it and compensate inaccuracy of the GPS data).
From the question, I assume you want just a 2D data and you'll be using the Earth's magnetic field as a source (as otherwise, GPS wouldn't help). You might be better off renting a vehicle rotation stand for a day - it will have a steady well known angular velocity and you can record the magnetometer data for a long period of time (say for an hour, over 500 rotations or so) and then process it by averaging out any noise. Your vehicle will produce a different magnetic field while the engine is off, idle and running, so you might want to do three different experiments (or more, to deduce the engine RPM effect to the magnetic field it produces). Also, if the magnetometer is located close to the passengers, you will have additional influences from them and their devices. If rotation stand is not available (or not affordable), you can make a calibration experiment with the GPS (to use the accelerometers or not, will depend on their precision) as following:
find a large flat empty paved surface with no underground magnetic sources (walk around with your magnetometer to check) then put the
vehicle into a turn on this surface and fix the steering wheel use the cruise control to fix the speed
wait for couple of circles to ensure they are equal make a recording of 100 circles (or 500 to get better precision)
and then average the GPS noise out
You can do this on a different speed to get the engine magnetic field influence from it's RPM
I had performed a similar procedure to calibrate the optical sensor on the steering wheel to build the model of vehicle angular rotation from the steering wheel angle and current speed and that does not produce very accurate results due to the tire slipping differently on a different surface, but it should work okay for your problem.

Forward and backward movement detection with IMU

We have an embedded device mounted in a vehicle. It has accelerometer, gyrosopce and GPS sensors on board. The goal is to distinguish when vehicle is moving forward and backward (in reverse gear). Sensor's axis are aligned with vehicle's axis.
Here's our observations:
It's not enough to check direction of acceleration, because going backwards and braking while moving forward would show results in the same direction.
We could say that if GPS speed decreased 70 -> 60 km/h it was a braking event. But it becomes tricky when speed is < 20 km/h. Decrease 20 -> 10 km/h is possible when going both directions.
We can't rely on GPS angle at low speeds.
How could we approach this problem? Any ideas, articles or researches would be helpful.
You are looking for Attitude and heading reference system implementation. Here's an open source code library. It works by fusing the two data sources (IMU and GPS) to determine the location and the heading.
AHRS provides you with roll, pitch and yaw which are the angles around X, Y and Z axises of the IMU device.
There are different algorithms to do that. Examples of AHRS algorithms are Madgwick and Mahony algorithms. They will provide you with quaternion and Eurler angles which can easily help you identify the orientation of the vehicle at any time.
This is a cool video of AHRS algo running in real time.
Similar question is here.
EDIT
Without Mag data, you won't get high accuracy and your drift will increase over time.
Still, you can perform AHRS on 6DoF (Acc XYZ and Gyr XYZ) using Madgwick algorithm. You can find an implementation here. If you want to dive into the theory of things, have a look at Madgwick's internal report.
Kalman Filter could be an option to merge your IMU 6DoF with GPS data which could dramatically reduce the drift over time. But that requires a good understanding of Kalman Filters and probably custom implementation.

Distance estimation based on signal strength

I have set of data which includes position of a car and unknown emitter signal level. I have to estimate the distance based on this. Basically signal levels varies inversely to the square of distance. But when we include stuff like multipath,reflections etc we need to use a diff equation. Here come the Hata Okumura Model which can give us the path loss based on distance. However , the distance is unknown as I dont know where the emitter is. I only have access to different lat/long sets and the received signal level.
What I am asking is could you guys please guide me to techniques which would help me estimate the distance based on current pos and signal strength.All I am asking for is guidance towards a technique which might be useful.
I have looked into How to calculate distance from Wifi router using Signal Strength? but he has 3 fixed wifi signals and can use the FSPL. However in an urban environment it doesnot work.
Since the car is moving, using any diffraction model would be very difficult. The multipath environment is constantly changing due to moving car, and any reflection/diffraction model requires well-known object geometry around the car. In your problem you have moving car position time series [x(t),y(t)] which is known. You also have a time series of rough measurement of the distance between the car and the emitter [r(t)] of unknown position. You need to solve the stationary unknown emitter position (X,Y). So you have many noisy measurement with two unknown parameters to estimate. This is a classic Least Square Estimation problem. You can formulate r(ti) = sqrt((x(ti)-X)^2 + (y(ti)-Y)^2) and feed your data into this equation and do least square estimation. The data obviously is noisy due to multipath but the emitter is stationary and with overtime and during estimation process, the noise can be more or less smooth out.
Least Square Estimation

How do I calculate the location of an object that is both turning, and accelerating?

I am trying to write a simple game, but I'm stuck on what I think is simple physics. I have an object that at point 0,0,0 and is travelling at say 1 unit per second. If I give an instruction, that the object must turn 15 degrees per second , for 6 seconds (so it ends up 90 degrees right of it's starting position), and accelerate at 1 unit per second for 4 seconds (so it's final speed is 5 units per second), how do I calculate it's end point?
I think I know how to answer this for an object that isn't accelerating, because it's just a circle. In the example above, I know that the circumference of the circle is 4 * distance (because it is traversing 1/4 of a circle), and from that I can calculate the radius and angles and use simple trig to solve the answer.
However, because at any given moment in time the object is travelling slightly faster than it was in the previous moment, my end result wouldn't be a circle, it would be some sort of arc. I suppose I could estimate the end point by looping through each step (say 60 steps per second), but this sounds error prone and inefficient.
Could anybody point me in the right direction?
Your notion of stepping through is exactly what you do.
Almost all games operate under what's known as a "game tick". There are actually a number of different ticks that could be going on.
"Game tick" - each game tick, a set of requests are fired, AI is re-evaluated, and overall the game state has changed.
"physics tick" - each physics tick, each physical object is subject to a state change based on its current physical state.
"graphics tick" - also known as a rendering loop, this is simply drawing the game state to the screen.
The game tick and physics tick often, but do not need to, coincide with each other. You could have a physics tick that moves objects at their current speed along their current movement vector, and also applied gravity to it if necessary (altering its speed,) while adding additional acceleration (perhaps via rocket boosters?) in a completely separate loop. With proper multi-threading care, it would fit together nicely. The more de-coupled they are, the easier it will be to swap them out with better implementations later anyway.
Simulating via a time-step is how almost all physics are done in real-time gaming. I even used to do thermal modeling for the department of defense, and that's how we did our physics modelling there too (we just got to use bigger computers :-) )
Also, this allows you to implement complex rotations in your physics engine. The less special cases you have in your physics engine, the less things will break.
What you're asking is actually a Mathematical Rate of change question. Every object that is in motion has position locations of (x,y,z). If you are able to break down the component velocity and accelerations into their individual planes, your final end point would be (x1, y1, z1) which is the respective outcome of your equations in that plane.
Hope it helps (:

Applying scrolling physics to an app

I believe this is a fairly simple question but I have no idea where to start.
I'm trying to implement a feature where an entity (such as an image) can be flicked across the screen such that it decelerates over time based on an initial speed (non-zero) and coefficient of friction.
In other words, given an initial velocity and constant friction, how can I programmtically determine where an object will be at time t??
Feel free reply using pseudo-code or any programming language you're comfortable with.
Thanks guys
The equation is
s = u*t + 0.5*a*t*t
where,
s is displacement (i.e. position)
u is the initial speed (can be zero too actually)
a is the acceleration (if you want deceleration use a negative value instead)
t is the time elapsed
To account for friction your a will be (on a horizontal surface)
a = -μg
where,
μ is the coefficient of friction
g is gravitational acceleration