From what I saw in the config documentation it’s easy to configure multiple devices within the same name space using:
namespace <namespace-name> {
memory-size <SIZE>G # Maximum memory allocation for primary
# and secondary indexes.
storage-engine device { # Configure the storage-engine to use persistence
device /dev/<device> # raw device. Maximum size is 2 TiB
# device /dev/<device> # (optional) another raw device.
write-block-size 128K # adjust block size to make it efficient for SSDs.
}
}
Is there is anyway I can do that without restarting asd service? using asinfo tool for example?
No, you cannot add devices dynamically.
User also posted here:
https://discuss.aerospike.com/t/adding-extra-device-to-namespace-using-asinfo/4525
I have an application with a high load for batch read operations. My Aerospike cluster (v 3.7.2) has 14 servers, each one with 7GB RAM and 2 CPUs in Google Cloud.
By looking at Google Cloud Monitoring Graphs, I noticed a very unbalanced load between servers: some servers have almost 100% CPU load, while others have less than 50% (image below). Even after hours of operation, the cluster unbalanced pattern doesn't change.
Is there any configuration that I could change to make this cluster more homogeneous? How to optimize node balancing?
Edit 1
All servers in the cluster have the same identical aerospike.conf file:
Aerospike database configuration file.
service {
user root
group root
paxos-single-replica-limit 1 # Number of nodes where the replica count is automatically reduced to 1.
paxos-recovery-policy auto-reset-master
pidfile /var/run/aerospike/asd.pid
service-threads 32
transaction-queues 32
transaction-threads-per-queue 32
batch-index-threads 32
proto-fd-max 15000
batch-max-requests 200000
}
logging {
# Log file must be an absolute path.
file /var/log/aerospike/aerospike.log {
context any info
}
}
network {
service {
#address any
port 3000
}
heartbeat {
mode mesh
mesh-seed-address-port 10.240.0.6 3002
mesh-seed-address-port 10.240.0.5 3002
port 3002
interval 150
timeout 20
}
fabric {
port 3001
}
info {
port 3003
}
}
namespace test {
replication-factor 3
memory-size 5G
default-ttl 0 # 30 days, use 0 to never expire/evict.
ldt-enabled true
storage-engine device {
file /data/aerospike.dat
write-block-size 1M
filesize 180G
}
}
Edit 2:
$ asinfo
1 : node
BB90600F00A0142
2 : statistics
cluster_size=14;cluster_key=E3C3672DCDD7F51;cluster_integrity=true;objects=3739898;sub-records=0;total-bytes-disk=193273528320;used-bytes-disk=26018492544;free-pct-disk=86;total-bytes-memory=5368709120;used-bytes-memory=239353472;data-used-bytes-memory=0;index-used-bytes-memory=239353472;sindex-used-bytes-memory=0;free-pct-memory=95;stat_read_reqs=2881465329;stat_read_reqs_xdr=0;stat_read_success=2878457632;stat_read_errs_notfound=3007093;stat_read_errs_other=0;stat_write_reqs=551398;stat_write_reqs_xdr=0;stat_write_success=549522;stat_write_errs=90;stat_xdr_pipe_writes=0;stat_xdr_pipe_miss=0;stat_delete_success=4;stat_rw_timeout=1862;udf_read_reqs=0;udf_read_success=0;udf_read_errs_other=0;udf_write_reqs=0;udf_write_success=0;udf_write_err_others=0;udf_delete_reqs=0;udf_delete_success=0;udf_delete_err_others=0;udf_lua_errs=0;udf_scan_rec_reqs=0;udf_query_rec_reqs=0;udf_replica_writes=0;stat_proxy_reqs=7021;stat_proxy_reqs_xdr=0;stat_proxy_success=2121;stat_proxy_errs=4739;stat_ldt_proxy=0;stat_cluster_key_err_ack_dup_trans_reenqueue=607;stat_expired_objects=0;stat_evicted_objects=0;stat_deleted_set_objects=0;stat_evicted_objects_time=0;stat_zero_bin_records=0;stat_nsup_deletes_not_shipped=0;stat_compressed_pkts_received=0;err_tsvc_requests=110;err_tsvc_requests_timeout=0;err_out_of_space=0;err_duplicate_proxy_request=0;err_rw_request_not_found=17;err_rw_pending_limit=19;err_rw_cant_put_unique=0;geo_region_query_count=0;geo_region_query_cells=0;geo_region_query_points=0;geo_region_query_falsepos=0;fabric_msgs_sent=58002818;fabric_msgs_rcvd=57998870;paxos_principal=BB92B00F00A0142;migrate_msgs_sent=55749290;migrate_msgs_recv=55759692;migrate_progress_send=0;migrate_progress_recv=0;migrate_num_incoming_accepted=7228;migrate_num_incoming_refused=0;queue=0;transactions=101978550;reaped_fds=6;scans_active=0;basic_scans_succeeded=0;basic_scans_failed=0;aggr_scans_succeeded=0;aggr_scans_failed=0;udf_bg_scans_succeeded=0;udf_bg_scans_failed=0;batch_index_initiate=40457778;batch_index_queue=0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0,0:0;batch_index_complete=40456708;batch_index_timeout=1037;batch_index_errors=33;batch_index_unused_buffers=256;batch_index_huge_buffers=217168717;batch_index_created_buffers=217583519;batch_index_destroyed_buffers=217583263;batch_initiate=0;batch_queue=0;batch_tree_count=0;batch_timeout=0;batch_errors=0;info_queue=0;delete_queue=0;proxy_in_progress=0;proxy_initiate=7021;proxy_action=5519;proxy_retry=0;proxy_retry_q_full=0;proxy_unproxy=0;proxy_retry_same_dest=0;proxy_retry_new_dest=0;write_master=551089;write_prole=1055431;read_dup_prole=14232;rw_err_dup_internal=0;rw_err_dup_cluster_key=1814;rw_err_dup_send=0;rw_err_write_internal=0;rw_err_write_cluster_key=0;rw_err_write_send=0;rw_err_ack_internal=0;rw_err_ack_nomatch=1767;rw_err_ack_badnode=0;client_connections=366;waiting_transactions=0;tree_count=0;record_refs=3739898;record_locks=0;migrate_tx_objs=0;migrate_rx_objs=0;ongoing_write_reqs=0;err_storage_queue_full=0;partition_actual=296;partition_replica=572;partition_desync=0;partition_absent=3228;partition_zombie=0;partition_object_count=3739898;partition_ref_count=4096;system_free_mem_pct=61;sindex_ucgarbage_found=0;sindex_gc_locktimedout=0;sindex_gc_inactivity_dur=0;sindex_gc_activity_dur=0;sindex_gc_list_creation_time=0;sindex_gc_list_deletion_time=0;sindex_gc_objects_validated=0;sindex_gc_garbage_found=0;sindex_gc_garbage_cleaned=0;system_swapping=false;err_replica_null_node=0;err_replica_non_null_node=0;err_sync_copy_null_master=0;storage_defrag_corrupt_record=0;err_write_fail_prole_unknown=0;err_write_fail_prole_generation=0;err_write_fail_unknown=0;err_write_fail_key_exists=0;err_write_fail_generation=0;err_write_fail_generation_xdr=0;err_write_fail_bin_exists=0;err_write_fail_parameter=0;err_write_fail_incompatible_type=0;err_write_fail_noxdr=0;err_write_fail_prole_delete=0;err_write_fail_not_found=0;err_write_fail_key_mismatch=0;err_write_fail_record_too_big=90;err_write_fail_bin_name=0;err_write_fail_bin_not_found=0;err_write_fail_forbidden=0;stat_duplicate_operation=53184;uptime=1001388;stat_write_errs_notfound=0;stat_write_errs_other=90;heartbeat_received_self=0;heartbeat_received_foreign=145137042;query_reqs=0;query_success=0;query_fail=0;query_abort=0;query_avg_rec_count=0;query_short_running=0;query_long_running=0;query_short_queue_full=0;query_long_queue_full=0;query_short_reqs=0;query_long_reqs=0;query_agg=0;query_agg_success=0;query_agg_err=0;query_agg_abort=0;query_agg_avg_rec_count=0;query_lookups=0;query_lookup_success=0;query_lookup_err=0;query_lookup_abort=0;query_lookup_avg_rec_count=0
3 : features
cdt-list;pipelining;geo;float;batch-index;replicas-all;replicas-master;replicas-prole;udf
4 : cluster-generation
61
5 : partition-generation
11811
6 : edition
Aerospike Community Edition
7 : version
Aerospike Community Edition build 3.7.2
8 : build
3.7.2
9 : services
10.0.3.1:3000;10.240.0.14:3000;10.0.3.1:3000;10.240.0.27:3000;10.0.3.1:3000;10.240.0.5:3000;10.0.3.1:3000;10.240.0.43:3000;10.0.3.1:3000;10.240.0.30:3000;10.0.3.1:3000;10.240.0.18:3000;10.0.3.1:3000;10.240.0.42:3000;10.0.3.1:3000;10.240.0.33:3000;10.0.3.1:3000;10.240.0.24:3000;10.0.3.1:3000;10.240.0.37:3000;10.0.3.1:3000;10.240.0.41:3000;10.0.3.1:3000;10.240.0.13:3000;10.0.3.1:3000;10.240.0.23:3000
10 : services-alumni
10.0.3.1:3000;10.240.0.42:3000;10.0.3.1:3000;10.240.0.5:3000;10.0.3.1:3000;10.240.0.13:3000;10.0.3.1:3000;10.240.0.14:3000;10.0.3.1:3000;10.240.0.18:3000;10.0.3.1:3000;10.240.0.23:3000;10.0.3.1:3000;10.240.0.24:3000;10.0.3.1:3000;10.240.0.27:3000;10.0.3.1:3000;10.240.0.30:3000;10.0.3.1:3000;10.240.0.37:3000;10.0.3.1:3000;10.240.0.43:3000;10.0.3.1:3000;10.240.0.33:3000;10.0.3.1:3000;10.240.0.41:3000
I have a few comments about your configuration. First, transaction-threads-per-queue should be set to 3 or 4 (don't set it to the number of cores).
The second has to do with your batch-read tuning. You're using the (default) batch-index protocol, and the config params you'll need to tune for batch-read performance are:
You have batch-max-requests set very high. This is probably affecting both your CPU load and your memory consumption. It's enough that there's a slight imbalance in the number of keys you're accessing per-node, and that will reflect in the graphs you've shown. At least, this is possibly the issue. It's better that you iterate over smaller batches than try to fetch 200K records per-node at a time.
batch-index-threads – by default its value is 4, and you set it to 32 (of a max of 64). You should do this incrementally by running the same test and benchmarking the performance. On each iteration adjust higher, then down if it's decreased in performance. For example: test with 32, +8 = 40 , +8 = 48, -4 = 44. There's no easy rule-of-thumb for the setting, you'll need to tune through iterations on the hardware you'll be using, and monitor the performance.
batch-max-buffer-per-queue – this is more directly linked to the number of concurrent batch-read operations the node can support. Each batch-read request will consume at least one buffer (more if the data cannot fit in 128K). If you do not have enough of these allocated to support the number of concurrent batch-read requests you will get exceptions with error code 152 BATCH_QUEUES_FULL . Track and log such events clearly, because it means you need to raise this value. Note that this is the number of buffers per-queue. Each batch response worker thread has its own queue, so you'll have batch-index-threads x batch-max-buffer-per-queue buffers, each taking 128K of RAM. The batch-max-unused-buffers caps the memory usage of all these buffers combined, destroying unused buffers until their number is reduced. There's an overhead to allocating and destroying these buffers, so you do not want to set it too low compared to the total. Your current cost is 32 x 256 x 128KB = 1GB.
Finally, you're storing your data on a filesystem. That's fine for development instances, but not recommended for production. In GCE you can provision either a SATA SSD or an NVMe SSD for your data storage, and those should be initialized, and used as block devices. Take a look at the GCE recommendations for more details. I suspect you have warnings in your log about the device not keeping up.
It's likely that one of your nodes is an outlier with regards to the number of partitions it has (and therefore number of objects). You can confirm it with asadm -e 'asinfo -v "objects"'. If that's the case, you can terminate that node, and bring up a new one. This will force the partitions to be redistributed. This does trigger a migration, which takes quite longer in the CE server than in the EE one.
For anyone interested, Aerospike Enterpirse 4.3 introduced 'uniform-balance' which homogeneously balances data partitions. Read more here: https://www.aerospike.com/blog/aerospike-4-3-all-flash-uniform-balance/
we use aerospike in our projects and caught strange problem.
We have a 3 node cluster and after some node restarting it stop working.
So, we make test to explain our problem
We make test cluster. 3 node, replication count = 2
Here is our namespace config
namespace test{
replication-factor 2
memory-size 100M
high-water-memory-pct 90
high-water-disk-pct 90
stop-writes-pct 95
single-bin true
default-ttl 0
storage-engine device {
cold-start-empty true
file /tmp/test.dat
write-block-size 1M
}
We write 100Mb test data after that we have that situation
available pct equal about 66% and Disk Usage about 34%
All good :slight_smile:
But we stopped one node. After migration we see that available pct = 49% and disk usage 50%
Return node to cluster and after migration we see that disk usage became previous about 32%, but available pct on old nodes stay 49%
Stop node one more time
available pct = 31%
Repeat one more time we get that situation
available pct = 0%
Our cluster crashed, Clients get AerospikeException: Error Code 8: Server memory error
So how we can clean available pct?
If your defrag-q is empty (and you can see whether it is from grepping the logs) then the issue is likely to be that your namespace is smaller than your post-write-queue. Blocks on the post-write-queue are not eligible for defragmentation and so you would see avail-pct trending down with no defragmentation to reclaim the space. By default the post-write-queue is 256 blocks and so in your case that would equate to 256Mb. If your namespace is smaller than that you will see avail-pct continue to drop until you hit stop-writes. You can reduce the size of the post-write-queue dynamically (i.e. no restart needed) using the following command, here I suggest 8 blocks:
asinfo -v 'set-config:context=namespace;id=<NAMESPACE>;post-write-queue=8'
If you are happy with this value you should amend your aerospike.conf to include it so that it persists after a node restart.
I'm having hard time understanding the following from AeroSpike documentation:
http://www.aerospike.com/docs/client/python/usage/kvs/record-structure.html
A record also has two metadata values associated with it - the record generation (the number of times it has been modified) and its ttl. A ttl can be set to the numbers of second remaining till it is considered expired, or to 0 (for 'never expire', and the default). Records whose ttl has expired will be garbage collected by the server. Each time the record is written or touched (using touch()) its ttl will reset.
My initial thought was that if namespace policy default ttl is set to 0 then the records will not expire.
My Aerospike namespace configuration is the following :
namespace brand {
replication-factor 2
memory-size 4G
default-ttl 0 # 30 days, use 0 to never expire/evict.
storage-engine memory
# To use file storage backing, comment out the line above and use the
# following lines instead.
set twitter {
set-disable-eviction true
}
storage-engine device {
file /opt/aerospike/data/bar.dat
filesize 16G
data-in-memory true # Store data in memory in addition to file.
}
}
I made a few inserts into the database, then when I retrieved the data I got the following :
{ name: 'test',
twitter: 'test',
domain: 'test.com',
description: 'Your First Round Fund' } { ttl: 4294967295, gen: 2 }
Somehow a ttl appeared on the record and other records have a ttl also. I don't want my records to be deleted from the database. How can I remove the ttl from the records and how can I prevent this from happening in the future?
"asadm -e 'show stat like ttl' Shows the following:
~~~~brand Namespace Statistics~~~~
NODE : 1
cold-start-evict-ttl: 4294967295
default-ttl : 0
max-ttl : 0
~~~~test Namespace Statistics~~~~~
NODE : 1
cold-start-evict-ttl: 4294967295
default-ttl : 2592000
max-ttl : 0
asinfo -v 'hist-dump:ns=brand;hist=ttl' Shows the following
brand:ttl=100,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;
The node.js get operations meta information is displaying { ttl: 4294967295, gen: 2 }.
Alright! So the TTL unsigned 32 bit integer, you are seeing the maximum value of (2^32 -1) if it were a signed it it would be -1. The max value has special meaning in Aerospike and it means that it lives indefinitely. Aerospike has accepted -1 as indefinite for about a year now and 0 from the client means use server default.
The node.js client is based on our c client which was changed to convert ttl 0 values from the server to 0xFFFFffff or -1. This was mentioned in the c client's 3.0.51 release notes.
Thanks for highlighting this issue, looks like there are some stale docs around this area.
I get the following error while storing the data to aerospike ( client.put ). I have enough space on the drive.
Aerospike: Failed to store record. Error: (13L, 'AEROSPIKE_ERR_RECORD_TOO_BIG', 'src/main/client/put.c', 106).
Here is my Aerospike server namespace configuration
namespace test {
replication-factor 1
memory-size 1G
default-ttl 30d # 30 days, use 0 to never expire/evict.
storage-engine device {
file /opt/aerospike/data/test.dat
filesize 2G
data-in-memory true # Store data in memory in addition to file.
}
}
By default namespaces have a write-block-size of 1 MiB. This is also the maximum configurable size and will limit the max object size the application is able to write to Aerospike.
If you need to go beyond 1 MiB see Large Data Types as a possible solution.
UPDATE 2019/09/06
Since Aerospike 3.16, the write-block-size limit has been increased from 1 MiB to 8 MiB.
Yes, but unfortunately, Aerospike has deprecated LDT (https://www.aerospike.com/blog/aerospike-ldt/). They now recommend to use Lists or Maps, but as stated in their post:
"the new implementation does not solve the problem of the 1MB Aerospike database row size limit. A future key feature of the product will be an enhanced implementation that transcends the 1MB limit for a number of types"
In other terms, it is still an unsolved problem when storing your data on SSD or HDD. However, you can store larger data on memory namespaces.