Boxplot with pandas and groupby - pandas

I have the following dataset sample:
0 1
0 0 0.040158
1 2 0.500642
2 0 0.005694
3 1 0.065052
4 0 0.034789
5 2 0.128495
6 1 0.088816
7 1 0.056725
8 0 -0.000193
9 2 -0.070252
10 2 0.138282
11 2 0.054638
12 2 0.039994
13 2 0.060659
14 0 0.038562
And need a box and whisker plot, grouped by column 0. I have the following:
plt.figure()
grouped = df.groupby(0)
grouped.boxplot(column=1)
plt.savefig('plot.png')
But I end up with three subplots. How can place all three on one plot?
Thanks.

In 0.16.0 version of pandas, you could simply do this:
df.boxplot(by='0')
Result:

I don't believe you need to use groupby.
df2 = df.pivot(columns=df.columns[0], index=df.index)
df2.columns = df2.columns.droplevel()
>>> df2
0 0 1 2
0 0.040158 NaN NaN
1 NaN NaN 0.500642
2 0.005694 NaN NaN
3 NaN 0.065052 NaN
4 0.034789 NaN NaN
5 NaN NaN 0.128495
6 NaN 0.088816 NaN
7 NaN 0.056725 NaN
8 -0.000193 NaN NaN
9 NaN NaN -0.070252
10 NaN NaN 0.138282
11 NaN NaN 0.054638
12 NaN NaN 0.039994
13 NaN NaN 0.060659
14 0.038562 NaN NaN
df2.boxplot()

Related

Pandas assign value in one column based on top 10 values in another column

I have a table:
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4
I would like to make a new column called 'flag' for the top 2 values in column D.
I've tried:
for i in df.D.nlargest(2):
df.['flag']= 1
But that gets me:
A B C D flag
0 NaN 2.0 NaN 0 1
1 3.0 4.0 NaN 1 1
2 NaN NaN NaN 5 1
3 NaN 3.0 NaN 4 1
What I want is:
A B C D flag
0 NaN 2.0 NaN 0 0
1 3.0 4.0 NaN 1 0
2 NaN NaN NaN 5 1
3 NaN 3.0 NaN 4 1
IIUC:
df['flag'] = 0
df.loc[df.D.nlargest(2).index, 'flag'] = 1
Or:
df['flag'] = df.index.isin(df.D.nlargest(2).index).astype(int)
Output:
A B C D flag
0 NaN 2.0 NaN 0 0
1 3.0 4.0 NaN 1 0
2 NaN NaN NaN 5 1
3 NaN 3.0 NaN 4 1
IIUC
df['flag']=df.D.sort_values().tail(2).eq(df.D).astype(int)
df
A B C D flag
0 NaN 2.0 NaN 0 0
1 3.0 4.0 NaN 1 0
2 NaN NaN NaN 5 1
3 NaN 3.0 NaN 4 1

For every row in pandas, do until sample ID change

How can I iterarate over rows in a dataframe until the sample ID change?
my_df:
ID loc_start
sample1 10
sample1 15
sample2 10
sample2 20
sample3 5
Something like:
samples = ["sample1", "sample2" ,"sample3"]
out = pd.DataFrame()
for sample in samples:
if my_df["ID"] == sample:
my_list = []
for index, row in my_df.iterrows():
other_list = [row.loc_start]
my_list.append(other_list)
my_list = pd.DataFrame(my_list)
out = pd.merge(out, my_list)
Expected output:
sample1 sample2 sample3
10 10 5
15 20
I realize of course that this could be done easier if my_df really would look like this. However, what I'm after is the principle to iterate over rows until a certain column value change.
Based on the input & output provided, this should work.
You need to provide more info if you are looking for something else.
df.pivot(columns='ID', values = 'loc_start').rename_axis(None, axis=1).apply(lambda x: pd.Series(x.dropna().values))
output
sample1 sample2 sample3
0 10.0 10.0 5.0
1 15.0 20.0 NaN
Ben.T is correct that a pivot works here. Here is an example:
import pandas as pd
import numpy as np
df = pd.DataFrame(data=np.random.randint(0, 5, (10, 2)), columns=list("AB"))
# what does the df look like? Here, I consider column A to be analogous to your "ID" column
In [5]: df
Out[5]:
A B
0 3 1
1 2 1
2 4 2
3 4 1
4 0 4
5 4 2
6 4 1
7 3 1
8 1 1
9 4 0
# now do a pivot and see what it looks like
df2 = df.pivot(columns="A", values="B")
In [8]: df2
Out[8]:
A 0 1 2 3 4
0 NaN NaN NaN 1.0 NaN
1 NaN NaN 1.0 NaN NaN
2 NaN NaN NaN NaN 2.0
3 NaN NaN NaN NaN 1.0
4 4.0 NaN NaN NaN NaN
5 NaN NaN NaN NaN 2.0
6 NaN NaN NaN NaN 1.0
7 NaN NaN NaN 1.0 NaN
8 NaN 1.0 NaN NaN NaN
9 NaN NaN NaN NaN 0.0
Not quite what you wanted. With a little help from Jezreal's answer
df2 = df2.apply(lambda x: pd.Series(x.dropna().values))
In [20]: df3
Out[20]:
A 0 1 2 3 4
0 4.0 1.0 1.0 1.0 2.0
1 NaN NaN NaN 1.0 1.0
2 NaN NaN NaN NaN 2.0
3 NaN NaN NaN NaN 1.0
4 NaN NaN NaN NaN 0.0
The empty spots in the dataframe have to be filled with something, and NaN is used by default. Is this what you wanted?
If, on the other hand, you wanted to perform an operation on your data you would use the groupby instead.
df2 = df.groupby(by="A", as_index=False).mean()

Create a new ID column based on conditions in other column using pandas

I am trying to make a new column 'ID' which should give a unique ID each time there is no 'NaN' value in 'Data' column. If the non null values come right to each other, the ID remains the same. I have provided how my final Id column should look like below as reference to better understand. Could anyone guide me on this?
Id Data
0 NaN
0 NaN
0 NaN
1 54
1 55
0 NaN
0 NaN
2 67
0 NaN
0 NaN
3 33
3 44
3 22
0 NaN
.groupby the cumsum to get consecutive groups, using where to mask the NaN. .ngroup gets the consecutive IDs. Also possible with rank.
s = df.Data.isnull().cumsum().where(df.Data.notnull())
df['ID'] = df.groupby(s).ngroup()+1
# df['ID'] = s.rank(method='dense').fillna(0).astype(int)
Output:
Data ID
0 NaN 0
1 NaN 0
2 NaN 0
3 54.0 1
4 55.0 1
5 NaN 0
6 NaN 0
7 67.0 2
8 NaN 0
9 NaN 0
10 33.0 3
11 44.0 3
12 22.0 3
13 NaN 0
Using factorize
v=pd.factorize(df.Data.isnull().cumsum()[df.Data.notnull()])[0]+1
df.loc[df.Data.notnull(),'Newid']=v
df.Newid.fillna(0,inplace=True)
df
Id Data Newid
0 0 NaN 0.0
1 0 NaN 0.0
2 0 NaN 0.0
3 1 54.0 1.0
4 1 55.0 1.0
5 0 NaN 0.0
6 0 NaN 0.0
7 2 67.0 2.0
8 0 NaN 0.0
9 0 NaN 0.0
10 3 33.0 3.0
11 3 44.0 3.0
12 3 22.0 3.0
13 0 NaN 0.0

Concatenating dataframe that have different number of rows

I have a dataframe df = df[['A', 'B', 'C']] with 3 columns and 2000 rows
Then I have another set of data with only 200 rows
How can I add this into df['D'] such that this 200 rows will only appear as the tail of the 2000 rows?
So that from row 0-1800 for df['D'] it will be NaN and then 1801 to 2000 will be the values
Been trying various ways without success... thank you
data with 200 rows in this format
[[ 0.43628979]
[ 0.43454027]
[ 0.43552566]
[ 0.43542767]
[ 0.43331838]
...
I believe you need join with changing index by last index values of df1:
np.random.seed(100)
df1 = pd.DataFrame(np.random.randint(10, size=(20,3)), columns=list('ABC'))
print (df1)
A B C
0 8 8 3
1 7 7 0
2 4 2 5
3 2 2 2
4 1 0 8
5 4 0 9
6 6 2 4
7 1 5 3
8 4 4 3
9 7 1 1
10 7 7 0
11 2 9 9
12 3 2 5
13 8 1 0
14 7 6 2
15 0 8 2
16 5 1 8
17 1 5 4
18 2 8 3
19 5 0 9
df2 = pd.DataFrame(np.random.randint(10, size=(2,5)), columns=list('werty'))
print (df2)
w e r t y
0 3 6 3 4 7
1 6 3 9 0 4
df2.index = df1.index[-len(df2.index):]
df = df1.join(df2)
print (df)
A B C w e r t y
0 8 8 3 NaN NaN NaN NaN NaN
1 7 7 0 NaN NaN NaN NaN NaN
2 4 2 5 NaN NaN NaN NaN NaN
3 2 2 2 NaN NaN NaN NaN NaN
4 1 0 8 NaN NaN NaN NaN NaN
5 4 0 9 NaN NaN NaN NaN NaN
6 6 2 4 NaN NaN NaN NaN NaN
7 1 5 3 NaN NaN NaN NaN NaN
8 4 4 3 NaN NaN NaN NaN NaN
9 7 1 1 NaN NaN NaN NaN NaN
10 7 7 0 NaN NaN NaN NaN NaN
11 2 9 9 NaN NaN NaN NaN NaN
12 3 2 5 NaN NaN NaN NaN NaN
13 8 1 0 NaN NaN NaN NaN NaN
14 7 6 2 NaN NaN NaN NaN NaN
15 0 8 2 NaN NaN NaN NaN NaN
16 5 1 8 NaN NaN NaN NaN NaN
17 1 5 4 NaN NaN NaN NaN NaN
18 2 8 3 3.0 6.0 3.0 4.0 7.0
19 5 0 9 6.0 3.0 9.0 0.0 4.0

Create new dataframe columns from old dataframe rows using for loop --> N/A values

I created a dataframe df1:
df1 = pd.read_csv('FBK_var_conc_1.csv', names = ['Cycle', 'SQ'])
df1 = df1['SQ'].copy()
df1 = df1.to_frame()
df1.head(n=10)
SQ
0 2430.0
1 2870.0
2 2890.0
3 3270.0
4 3350.0
5 3520.0
6 26900.0
7 26300.0
8 28400.0
9 3230.0
And then created a second dataframe df2, that I want to fill with the row values of df 1:
df2 = pd.DataFrame()
for x in range(12):
y='Experiment %d' % (x+1)
df2[y]= df1.iloc[3*x:3*x+3]
df2
I get the column names from Experiment 1 - Experiment 12 in df2 and the first column i filled with the right values, but all following columns are filled with N/A.
> Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6 Experiment 7 Experiment 8 Experiment 9 Experiment
> 10 Experiment 11 Experiment 12
> 0 2430.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
> 1 2870.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
> 2 2890.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
I've been looking at this for the last 2 hours but can't figure out why the columns after column 1 aren't filled with values.
Desired output:
Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6 Experiment 7 Experiment 8 Experiment 9 Experiment 10 Experiment 11 Experiment 12
2430 3270 26900 3230 2940 243000 256000 249000 2880 26100 3890 33400
2870 3350 26300 3290 3180 242000 254000 250000 3390 27900 3730 30700
2890 3520 28400 3090 3140 253000 260000 237000 3510 27400 3760 29600
I found the issue.
I had to use .values
So the final line of the loop has to be:
df2[y] = df1.iloc[3*x:3*x+3].values
and I get the right output