datastax : Spark job fails : Removing BlockManager with no recent heart beats - jvm

Im using datastax-4.6. I have created a cassandra table and stored 2crore records. Im trying to read the data using scala. The code works fine for few records but when i try to retrieve all 2crore records it displays me follwing error.
**WARN BlockManagerMasterActor: Removing BlockManager BlockManagerId(1, 172.20.98.17, 34224, 0) with no recent heart beats: 140948ms exceeds 45000ms
15/05/15 19:34:06 ERROR ConnectionManager: Corresponding SendingConnection to ConnectionManagerId(C15759,34224) not found**
Any help?

This problem is often tied to GC pressure
Tuning your Timeouts
Increase the spark.storage.blockManagerHeartBeatMs so that Spark waits for the GC pause to end.
SPARK-734 recommends setting -Dspark.worker.timeout=30000 -Dspark.akka.timeout=30000 -Dspark.storage.blockManagerHeartBeatMs=30000 -Dspark.akka.retry.wait=30000 -Dspark.akka.frameSize=10000
Tuning your jobs for your JVM
spark.cassandra.input.split.size - will allow you to change the level of parallelization of your cassandra reads. Bigger split sizes mean that more data will have to reside in memory at the same time.
spark.storage.memoryFraction and spark.shuffle.memoryFraction - amount of the heap that will be occupied by RDDs (as opposed to shuffle memory and spark overhead). If you aren't doing any shuffles, you could increase this value. The databricks guys say to make this similar in size to the size of your oldgen.
spark.executor.memory - Obviously this depends on your hardware. Per DataBricks you can do up to 55gb. Make sure to leave enough RAM for C* and for your OS and OS page cache. Remember that long GC pauses happen on larger heaps.
Out of curiosity, are you frequently going to be extracting your entire C* table with Spark? What's the use case?

Related

Using large dataframe in-memory (data not allowed to be "at rest") results in driver crash and/or out of memory - Azure Databricks

I'm having trouble working on Databricks with data that we are not allowed to save off or persist in any way. The data comes from an API (which returns a JSON response). We have a scala package on our cluster that makes the queries (almost 6k queries), saves them to a dataframe, then explodes that dataframe into a new dataframe that we can use to get the info we need. However, all the data gets collected to the driver node. Then, when we try to run comparisons/validations/spark code using the resulting dataframe, it won't distribute the work (tries to do everything on the driver) and takes up all the driver's JVM Heap memory.
The two errors we get are OutOfMemoryError: Java Heap Space or The spark driver has stopped unexpectedly and is restarting. Your notebook will be automatically reattached.
We've got a 64GB driver (with 5 32GB nodes) and have increased the max JVM Heap Memory to 25GB. But because it won't distribute the work to the nodes, the driver keeps crashing with the OOM errors.
Things run fine when we do save a parquet of this data and run our spark code/comparisons against the parquet (distributes the work fine), but, per an agreement with the data owners, we are only allowed to save data like this for development purposes (currently not a viable option for production).
Things we've tried:
-Removing all displays/prints/logs
-Caching the dataframe (and prior/subsequent dataframes to which it is connected) with .cache()/.count() and spark.sql("CACHE TABLE <tablename>")
-Increasing the size of the driver node to 64GB
-Increasing the JVM heap size to 25GB
-Removing unneeded columns from the dataframe
-Using .repartition(300) on the dataframe

Does dataframe.repartition(x) makes execution faster

I have a Spark script that reads data from amazon S3 and then writes in another bucket usion parquet format.
This is what the code looks like:
File = "LocationInFirstBucket.csv.gz"
df_ods = spark.read.csv(File, header=True, sep=";")
df_ods.repartition(25).write.format("parquet").mode("OverWrite").save("AnotherLocationInS3")
My question is: how does the repartition argument (here 25) affects the execution time? Should I increase it so the script runs faster?
Second question: Would it be better if I cache my df before the last line?
Thank you
In typical setups neither repartition nor cache will help you in this specific case. Since you read data from non-splittable format:
File = "LocationInFirstBucket.csv.gz"
df_ods = spark.read.csv(File, header=True, sep=";")
df_ods will have only one partition.
In such case repartitioning would make sense, if you performed any actual processing on this data.
However if you just write to distributed file system repartitioning will simply double the cost - you have to send data to other nodes first (that involves serialization, deserialization, network transfer, write to disk) and then still write to distributed file system.
There are of course edge cases when this makes sense. If network connecting your cluster is much faster than network connection your cluster to S3 nodes, effective latency might be a bit lower.
As of caching ‒ there is no value in caching here at all. Caching Dataset is expensive, and makes sense only if persisted data is reused.
Answer 1 :- Repartition of 25 or more or less it depends on how much data you have and no. of executors you provided. If your Spark code run in the cluster with more than one executor and it is not repartitioned then repartitioning will speedy to writing parallel your data.
Answer 2 :- There is no need to cache df before the last line because you are using only single action in your code. If you will perform multiple actions on your DF and don't want it will recalculate as the number of actions then you will Cache it.
The thing here is that Spark can parallelize writing to a certain point since one file can't be written by multiple executors at the same time.
Repartition helps you in this parallelization because it will write 25 different files (one for each partition). If you increase the number of partitions you will increase the number of written files hence speeding up the execution. This comes with a price because of the reading time will increase with the number of files to be read.
The limit is the number of executors you are running your job with, e.g. if you are running with 25 executors then setting repartition to 26 will not help you because to write the 26th partition one of the previous 25 would have to be finished.
For the other question, I don't think .cache() will help you because Spark is lazy, maybe this article can help you further.

Aerospike %age of available write blocks is less when hard disk space is available

We found ourselves this problem. Config is as follows :-
Aerospike version : 3.14
Underlying hard disk : non-SSD
Variable Name Value
memory-size 5 GB
free-pct-memory 98 %
available_pct 4 %
max-void-time 0 millisec
stop-writes 0
stop-writes-pct 90 %
hwm-breached true
default-ttl 604,800 sec
max-ttl 315,360,000 sec
enable-xdr false
single-bin false
data-in-memory false
Can anybody please help us out with this ? What could be a potential reason for this ?
Aerospike only writes to free blocks. A block may contain any number of records that fit. If your write/update pattern is such that a block never falls below 50% active records(the default threshold for defragmenting: defrag-lwm-pct), then you have a bunch of "empty" space that can't be utilized. Read more about defrag in the managing storage page.
Recovering from this is much easier with a cluster that's not seeing any writes. You can increase defrag-lwm-pct, so that more blocks are eligible and gets defragmented.
Another cause could be just that the HDD isn't fast enough to keep up with defragmentation.
You can read more on possible resolutions in the Aerospike KB - Recovering from Available Percent Zero. Don't read past "Stop service on a node..."
You are basically not defragging your perisistence storage device (75GB per node). From the snapshot you have posted, you have about a million records on 3 nodes with 21 million expired. So looks like you are writing records with very short ttl and the defrag is unable to keep up.
Can you post the output of few lines when you are in this state of:
$ grep defrag /var/log/aerospike/aerospike.log
and
$ grep thr_nsup /var/log/aerospike/aerospike.log ?
What is your write/update load ? My suspicion is that you are only creating short ttl records and reading, not updating.
Depending on what you are doing, increasing defrag-lwm-pct may actually make things worse for you. I would also tweak nsup-delete-sleep from 100 microseconds default but it will depend on what your log greps above show. So post those, and lets see.
(Edit: Also, from the fact that you are not seeing evictions even though you are above the 50% HWM on persistence storage means your nsup thread is taking a very long time to run. That again points to nsup-delete-sleep value needing tuning for your set up.)

Redis 1+ min query time on lists with 15 larger JSON objects (20MB total)

I use Redis to cache database inserts. For this I created a list CACHE into which I push serialized JSON lists. In pseudocode:
let entries = [{a}, {b}, {c}, ...];
redis.rpush("CACHE", JSON.stringify(entries));
The idea is to run this code for an hour, then later do an
let all = redis.lrange("CACHE", 0, LIMIT);
processAndInsert(all);
redis.ltrim("CACHE", 0, all.length);
Now the thing is that each entries can be relatively large (but far below 512MB / whatever Redis limit I read about). Each of the a, b, c is an object of probably 20 bytes, and entries itself can easily have 100k+ objects / 2MB.
My problem now is that even for very short CACHE lists of only 15 entries a simple lrange can take many minutes(!) even from the redis-cli (my node.js actually dies with an "FATAL ERROR: CALL_AND_RETRY_LAST Allocation failed - process out of memory", but that's a side comment).
The debug output for the list looks like this:
127.0.0.1:6379> debug object "CACHE"
Value at:00007FF202F4E330 refcount:1 encoding:linkedlist serializedlength:18104464 lru:12984004 lru_seconds_idle:1078
What is happening? Why is this so massively slow, and what can I do about it? This does not seem to be a normal slowness, something seems to be fundamentally wrong.
I am using a local Redis 2.8.2101 (x64), ioredis 1.6.1, node.js 0.12 on a relatively hardcore Windows 10 gaming machine (i5, 16GB RAM, 840 EVO SSD, ...) by the way.
Redis is great at doing lots of small operations,
but not so great at doing small numbers of "very big" operations.
I think you should re-evaluate your algorithm, and try to break apart your data in to smaller chunks. Not only you'll save the bandwidth, you'll also will not lock your redis instance long amounts of time.
Redis offers many data structures you should be able to use for more fine grain control over your data.
Well, still, in this case, since you are running the redis locally, and assuming you are not running anything else but this code, I doubt that the bandwidth, nor the redis is the problem. I'm more thinking this line:
JSON.stringify()
is the main culprit why you are seeing the slow execution.
JSON serialization of 20MB of string is not something simple,
The process needs allocate many small strings, and also has to go through all of your array and inspect each item individually. All of this will take a long time for a big object like this one.
Again, if you were breaking apart your data, and doing smaller operations with redis, you'd not need the JSON serializer at all.

Hadoop counters - tuning and optimization

I just wrote my first hadoop job. It processes many files and generates multipleoutput files for each input file. I am running it on a two node cluster and it takes about 10 minutes for my largest input set. Looking at the counters below, what are the optimizations I can do to make it run faster? Are there any specific indicators which one should look for in these counters-
Version: 2.0.0-mr1-cdh4.1.2
Map task Capacity:20
Reduce task Capacity:20
Avg task per node:20
We can see here that most of data reduction happens in the map phase (number of map output bytes is much less then HDFS read bytes, The same about map input records - it is much lower then map input record). We also see that a lot of CPU time spent. We also see low number of shuffling bytes
So this job is:
a) A lot of data reduction is done on Map phase.
b) The job is CPU bound.
So I think code of mapper and reducer should be optimized. I/O probably is not important for this job.