Insert skeleton in 3D model programmatically - kinect

Background
I'm working on a project where a user gets scanned by a Kinect (v2). The result will be a generated 3D model which is suitable for use in games.
The scanning aspect is going quite well, and I've generated some good user models.
Example:
Note: This is just an early test model. It still needs to be cleaned up, and the stance needs to change to properly read skeletal data.
Problem
The problem I'm currently facing is that I'm unsure how to place skeletal data inside the generated 3D model. I can't seem to find a program that will let me insert the skeleton in the 3D model programmatically. I'd like to do this either via a program that I can control programmatically, or adjust the 3D model file in such a way that skeletal data gets included within the file.
What have I tried
I've been looking around for similar questions on Google and StackOverflow, but they usually refer to either motion capture or skeletal animation. I know Maya has the option to insert skeletons in 3D models, but as far as I could find that is always done by hand. Maybe there is a more technical term for the problem I'm trying to solve, but I don't know it.
I do have a train of thought on how to achieve the skeleton insertion. I imagine it to go like this:
Scan the user and generate a 3D model with Kinect;
1.2. Clean user model, getting rid of any deformations or unnecessary information. Close holes that are left in the clean up process.
Scan user skeletal data using the Kinect.
2.2. Extract the skeleton data.
2.3. Get joint locations and store as xyz-coordinates for 3D space. Store bone length and directions.
Read 3D skeleton data in a program that can create skeletons.
Save the new model with inserted skeleton.
Question
Can anyone recommend (I know, this is perhaps "opinion based") a program to read the skeletal data and insert it in to a 3D model? Is it possible to utilize Maya for this purpose?
Thanks in advance.
Note: I opted to post the question here and not on Graphics Design Stack Exchange (or other Stack Exchange sites) because I feel it's more coding related, and perhaps more useful for people who will search here in the future. Apologies if it's posted on the wrong site.

A tricky part of your question is what you mean by "inserting the skeleton". Typically bone data is very separate from your geometry, and stored in different places in your scene graph (with the bone data being hierarchical in nature).
There are file formats you can export to where you might establish some association between your geometry and skeleton, but that's very format-specific as to how you associate the two together (ex: FBX vs. Collada).
Probably the closest thing to "inserting" or, more appropriately, "attaching" a skeleton to a mesh is skinning. There you compute weight assignments, basically determining how much each bone influences a given vertex in your mesh.
This is a tough part to get right (both programmatically and artistically), and depending on your quality needs, is often a semi-automatic solution at best for the highest quality needs (commercial games, films, etc.) with artists laboring over tweaking the resulting weight assignments and/or skeleton.
There are algorithms that get pretty sophisticated in determining these weight assignments ranging from simple heuristics like just assigning weights based on nearest line distance (very crude, and will often fall apart near tricky areas like the pelvis or shoulder) or ones that actually consider the mesh as a solid volume (using voxels or tetrahedral representations) to try to assign weights. Example: http://blog.wolfire.com/2009/11/volumetric-heat-diffusion-skinning/
However, you might be able to get decent results using an algorithm like delta mush which allows you to get a bit sloppy with weight assignments but still get reasonably smooth deformations.
Now if you want to do this externally, pretty much any 3D animation software will do, including free ones like Blender. However, skinning and character animation in general is something that tends to take quite a bit of artistic skill and a lot of patience, so it's worth noting that it's not quite as easy as it might seem to make characters leap and dance and crouch and run and still look good even when you have a skeleton in advance. That weight association from skeleton to geometry is the toughest part. It's often the result of many hours of artists laboring over the deformations to get them to look right in a wide range of poses.

Related

Custom rendering with GPU, Direct3D or OpenGL

I have a Windows application that currently renders graphics largely using MFC that I'd like to change to get better use out of the GPU. Most of the graphics are straightforward and could easily be built up into a scene graph, but some of the graphics could prove very difficult. Specifically, in addition to the normal mesh type objects, I'm also dealing with point clouds which are liable to contain billions of Cartesian stored in a very compact manner that use quite a lot of custom culling techniques to be displayed in real time (Example). What I'm looking for is a mechanism that does the bulk of the scene rendering to a buffer and then gives me access to that buffer, a z buffer, and camera parameters such that I can modify them before putting them out to the display. I'm wondering whether this is possible with Direct3D, OpenGL or possibly use a higher level framework like OpenSceneGraph, and what would be the best starting point? Given the software is Windows based, I'd probably prefer to use Direct3D as this is likely to lead to fewest driver issues which I'm eager to avoid. OpenSceneGraph seems to provide custom culling via octrees, which are close but not identical to what I'm using.
Edit: To clarify a bit more, currently I have the following;
A display list / scene in memory which will typically contain up to a few million triangles, lines, and pieces of text, which I cull in software and output to a bitmap using low performing drawing primitives
A point cloud in memory which may contain billions of points in a highly compressed format (~4.5 bytes per 3d point) which I cull and output to the same bitmap
Cursor information that gets added to the bitmap prior to output
A camera, z-buffer and attribute buffers for navigation and picking purposes
The slow bit is the highlighted part of section 1 which I'd like to replace with GPU rendering of some kind. The solution I envisage is to build a scene for the GPU, render it to a bitmap (with matching z-buffer) based on my current camera parameters and then add my point cloud prior to output.
Alternatively, I could move to a scene based framework that managed the cameras and navigation for me and provide points in view as spheres or splats based on volume and level of detail during the rendering loop. In this scenario I'd also need to be able add cursor information to the view.
In either scenario, the hosting application will be MFC C++ based on VS2017 which would require too much work to change for the purposes of this exercise.
It's hard to say exactly based on your description of a complex problem.
OSG can probably do what you're looking for.
Depending on your timeframe, I'd consider eschewing both OpenGL (OSG) and DirectX in favor of the newer Vulkan 3D API. It's a successor to both D3D and OGL, and is designed by the GPU manufacturers themselves to provide optimal performance exceeding both of its predecessors.
The OSG project is currently developing a Vulkan scenegraph known as VSG, which already demonstrates superior performance to OSG and will have more generalized culling ability.
I've worked a bunch with point clouds and am pretty experienced with them, but I'm not exactly clear on what you're proposing to do.
If you want to actually have a verbal discussion about the matter, I'm pretty easy to find (my company is AlphaPixel -- AlphaPixel.com) and you could call us. I'm in the European time zone right now, it's not clear from your question where you are but you sound US-based.

training images? Considerations for selection

I'm relatively new and am still learning the basics. I've used NVIDIA DIGITS in the past, and am now looking at Tensorflow. While I've been able to fumble my way around creating some models for a few projects I'm working on, I really want to start diving deeper into what I'm doing, how I'm doing it, and ultimately a better understanding of why.
One area that I would like to start with is the Images that I'm using for training and testing. Can anyone point me to a blog, an article, a paper, or give me some insight in what I need to consider when selecting images to train a new model on. Up until recently, I've been using datasets that have already been selected and that are available for download. Lets say I'm going to start working on a project that involves object detection of ships from a variety of distances and angles.
So my thoughts would be
1) I need a large quantity of images.
2) The images need to contain ships of the different types I would like to detect. (lets just say one class, ships, don't care what type of ships)
3) I also need to have images that have a great variety of distance perspective for the different types of ships.
Ultimately, my thoughts are that the images need to reflect the distance, perspective, and types of ships I would ideally want to identify from the video. Seems simple enough.
However, there are a number of questions
Does the images need to be the same/similar resolution as the camera I'll be using, for best results?
Does the images all need to be the same resolution?
Can I use a single image and just digitally zoom out on the image to give the illusion of different distances?
I'm sure there are a number of other questions that I'm not asking, or should be asking. Are there any guide lines available for creating a solid collection of images to use when creating the collection of images for training and validation?
I recommend thinking through end to end, like would you need to classify ship models as a next step? I recommend going through well known public datasets and actually work with the structure, how to store data, labels, how to handle preprocessing etc.
More importantly, what are you trying to achieve? Talking to experts in the topic does help greatly while preparing your own dataset.
Use open source images if you can, e.g. flickr, google, imagenet.
No, you don't need them to be the same resolution.
It is not ideal to zoom in/out images to use in different categories. Preprocessing images and data augmentation already does this to create more distant representations of the same class. This is why I would recommend hands on approach with an existing dataset first.
Yes, what you need is many, different representations of classes, and a roughly balanced dataset of classes. If you define your data structure well in the beginning, it will save you a ton of time as you won't have to make changes often.

Basics of face Sculpting in Blender

I mean, the basics..
1) I have seen in the Online videos, that they are modelling a character (or anything) through one object only, they are extruding, loop cut, scaling, etc and model a character, why don't they design different objects separately (like hands separately, legs separately, body separate and then join them together and make one object)..??????
2) Like What the texturing department has to see so that they should not return the model back to the modelling department. I mean like the meshes(polygons) over the model face must be quad, etc not triangle. while modelling a character..
what type of basics i should know , means is there any check list or is there any basics which i should see before modelling a character..
Please correct me if i am wrong , and answer my both questions.. Thanks
It may be common but it definitely isn't mandatory to have a model as one solid mesh. Some models will have parts of the body underneath clothing removed to reduce the poly count. How the model is to be used will be a big factor to how you model it, that is a for a single image it is easy to get away with multiple parts, while a character that will be animated in a cartoony animation could be stretched and distorted in ways that could show holes in a model with multiple pieces. When working in a team, there may be rules in place determining whether a solid or multi-part model is considered acceptable.
An example of an animated model made from multiple parts is Sintel, the main character in the Sintel short animation.
There is nothing stopping you from making a library of separate body parts and joining them together when you make your model. Be aware that this can bring complications, if you model an arm with 12 verts and then you make your hand with 15, then you have to fiddle around to merge them together.
You will also find some extra freedom to work with multiple body parts during the sculpting phase as you are creating a high density mesh that is used as a template to model a clean mesh over. This step is called retopology.
It is more likely that the rigging department will send a model back for fixing than the texturing department. When adding a rig and deforming the mesh in different ways, any parts that deform badly will be revealed and need fixing.
[...] (like hands separately, legs separately, body separate and then
join them together and make one object) [...]
Some modelers I know do precisely this and they do it in a way where they block in the design using broad primitive shapes, start slicing some edge loops and add broad details, then merge everything together, then sculpt it a bit further with high-res sculpting tools, and finally retopologize everything.
The main modelers I know who do this, however, model in a way that tries to adhere as close as possible to the concept artist's illustration. They're not creating their own models from scratch but are instead given top/front/back/side illustrations of a character, for example, and are just trying to match it as closely as possible.
When you start modeling everything in small pieces, it helps to have that concept illustration since you can get lost in the topology otherwise and fusing organic meshes together can be difficult to do in a clean way.
[...] why don't they design different objects separately? [...]
Again they sometimes do, but one of the appeals of creating organic meshes by keeping it seamless the entire time is that you can start to focus on how edge loops propagate across the entire model. It helps to know that the base of a finger is a hexagon, for example, in figuring out how to cleanly propagate and terminate the edge loops for a hand, and likewise have a strategy for the hand to cleanly propagate and terminate edge loops as it joins into the forearm.
It can be hard to get the topology to match up cleanly if you designed everything in small pieces and then had to figure out how to merge it all together. Polygonal modeling is very topology-oriented. It tends to require as much thinking about the wireframe and edge flows as it does the shape of the model, since it needs to be a certain way for everything to subdivide cleanly and smoothly and animate predictably with subdivision surfaces.
I used to work with developers who took one glance at the topology-dominated workflow of polygonal modeling and immediately wanted to jump to seeking alternatives, like voxel sculpting. With voxels you could be able to potentially model everything in pieces and foose it all together in a nice and smooth organic way without thinking about topology whatsoever.
However, that loses sight of the key appeal of polygonal meshes. Their wire flow forms a control lattice with a very finite number of control points for the artist to animate and move around to predictably control the shape of their model. You immediately lose that with a voxel representation -- so while voxels free the artist of thinking about how the topology works and how the wireframe flows through the model, it also loses all those control benefits of having that. So often if people use voxel sculpting, they end up meticulously retopologizing everything at the end anyway to gain back that level of coarse and predictable control they have with polygonal meshes.
I mean like the
meshes(polygons) over the model face must be quad, etc not triangle.
while modelling a character..
This is all in the context of subdivision surfaces: the most popular of which are variants of catmull-clark. That favors quads to get the most predictable subdivision. It's much easier for the artist to predict how everything will look like and deform if they favor, as much as possible, uniform grids of quadrangles wrapped around their model with 4-valence vertices and every polygon having 4 points. Then only in the case where they kind of need to "join" these quad grids together, they might create some funky topology: a 5-valence vertex here, a 3-valence vertex there, a 5-sided polygon here, a triangle there -- but those cases tend to deform a bit unpredictably (at least unintuitively), so artists tend to try to avoid these as much as possible.
Because when artists model polygonal meshes in this way, they are not just trying to create a statue with a nice shape. If that's all they wanted to do, they'd save themselves a lot of grief avoiding dealing with things in terms of individual vertices/edges/polygons in the first place and using something like Sculptris. Instead they are designing not only shapes but also designing a control lattice, a wire flow and a set of control points they can easily move around in the future to get predictable behavior out of their control cage. They're basically designing controls or an "interactive GUI/rig" almost for themselves with how they design the topology.
2) Like What the texturing department has to see so that they should
not return the model back to the modelling department.
Generally how a mesh is modeled in a direct sense shouldn't affect the texture department's work much at all if they're working with UV maps and painting textures over them (at that point it doesn't really matter if a model has clean wire flows or not, since all the texture artists do is pain images over the 2D UV map or directly onto the 3D model).
However, if the modeler does the UV mapping, then regardless of whether he uses quad meshes and clean wire flows or not, if the UV mapping is poor, then the resulting texture images will look all distorted. So the UV maps need to be made well with minimal distortion, though that's usually easy to do automatically these days.
The other exception is if the department doesn't use UV maps and instead uses, say, PTex from Disney. PTex really favors quads. In the original paper at least, it only worked with quads.

Robot odometry in labview

I am currently working on a (school-)project involving a robot having to navigate a corn field.
We need to make the complete software in NI Labview.
Because of the tasks the robot has to be able to perform the robot has to know it's position.
As sensors we have a 6-DOF IMU, some unrealiable wheel encoders and a 2D laser scanner (SICK TIM351).
Until now I am unable to figure out any algorithms or tutorials, and thus really stuck on this problem.
I am wondering if anyone ever attempted in making SLAM work in labview, and if so are there any examples or explanations to do this?
Or is there perhaps a toolkit for LabVIEW that contains this function/algorithm?
Kind regards,
Jesse Bax
3rd year mechatronic student
As Slavo mentioned, there's the LabVIEW Robotics module that contains algorithms like A* for pathfinding. But there's not very much there that can help you solve the SLAM problem, that I am aware of. The SLAM problem consist of the following parts: Landmark extraction, data association, state estimation and updating of state.
For landmark extraction, you have to pick one or multiple features that you want the robot to recognize. This can for example be a corner or a line(wall in 3D). You can for example use clustering, split and merge or the RANSAC algorithm. I believe your laser scanner extract and store the points in a list sorted by angle, this makes the Split and Merge algorithm very feasible. Although RANSAC is the most accurate of them, but also has a higher complexity. I recommend starting with some optimal data points for testing the line extraction. You can for example put your laser scanner in a small room with straight walls and perform one scan and save it to an array or a file. Make sure the contour is a bit more complex than just four walls. And remove noise either before or after measurement.
I haven't read up on good methods for data association, but you could for example just consider a landmark new if it is a certain distance away from any existing landmarks or update an old landmark if not.
State estimation and updating of state can be achieved with the complementary filter or the Extended Kalman Filter (EKF). EKF is the de facto for nonlinear state estimation [1] and tend to work very well in practice. The theory behind EKF is quite though, but it should be a tad easier to implement. I would recommend using the MathScript module if you are going to program EKF. The point of these two filters are to estimate the position of the robot from the wheel encoders and landmarks extracted from the laser scanner.
As the SLAM problem is a big task, I would recommend program it in multiple smaller SubVI's. So that you can properly test your parts without too much added complexity.
There's also a lot of good papers on SLAM.
http://www.cs.berkeley.edu/~pabbeel/cs287-fa09/readings/Durrant-Whyte_Bailey_SLAM-tutorial-I.pdf
http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf
The book "Probabalistic Robotics".
https://wiki.csem.flinders.edu.au/pub/CSEMThesisProjects/ProjectSmit0949/Thesis.pdf
LabVIEW provides LabVIEW Robotics module. There are also plenty of templates for robotics module. Firstly you can check the Starter Kit 2.0 template Which will provide you simple working self driving robot project. You can base on such template and develop your own application from working model, not from scratch.

Smoothing data received from CoreLocation

I'm trying to develop an app which allows you to walk around, and where you walked will be drawn on a map. I have this all working fine, but I'm finding that even with a reasonably accurate GPS location the points still jump around a bit. When drawn on a map this has the effect of creating a squiggly or zig-zag line.
I'm looking for suggestions/strategies on how to smooth the data, so that the line drawn on the map is more of a smooth best fit, rather than an accurate point to point drawing.
There are many different types of smoothing algorithms you could apply to the data (for a few starting points, see this Wikipedia article). The only way to know for sure which is/are suitable for your application is to implement and test them.
Simple or weighted moving averages are fairly common (taking the last n samples and averaging them), but have the problem of lagging behind the data. A common one for filtering signal noise is a high-pass filter, which attenuates small (noisy) movements while passing through larger ones. Apple has some code for this in their AccelerometerGraph sample.
I'd suggest trying those out first as they're easy to implement, before looking at the move complex ones.