I have poor skills for db design and I need some help about relations setup.
So use case is:
User which can be Coach or Client.
Client can have many coaches and coaches can have many clients.
Coach can create many workouts for client.
Client can also have many workouts assigned from coach.
Workout have many sets, sets have many exercises and reps etc...
So I created design on image.
But what make me feel that I am doing everything wrong is double keys.
In this table client_has_coach_has_workout I have two keys referencing n:n table and it confuses me as when I need to import data it will always have both keys from n:n table.
Any help please.
This design can work if you want it to, but I would consider reversing the link between coach and client to user.
remove client_id from user
remove coach_id from user
Add user_id as a foreign key to client
Add user_id as a foreign key to coach
Ultimately yes you are correct that now there are composite keys, but this is not a problem because during importing you would always need to lookup both the client_id and the coach_Id anyway.
To simplify the model logic, you can add an arbitrary Id key column to client_has_coach then client_has_coach_has_workout only needs a single foreign key client_has_coach_id that links back to the client_has_coach table, this forces us to lookup the specific linking record from client_has_coach and helps us enforce it's existence.
If you do use a composite key, then we can generally skip the lookup for client_has_coach and assume that it already exists, but this can lead to orphaned rows or scenarios where there is no record in client_has_coach corresponding to a combination of keys in client_has_coach_has_workout.
Composite keys work well in models where we do not need to maintain integrity between client_has_coach and client_has_coach_has_workout. But your naming conventions suggests that this is not a desirable aspect in your model.
Either way, on import of data you would need to first lookup the coach record, then lookup the client record to check for or create the record in client_has_coach, you would then import corresponding rows into client_has_coach_has_workout.
LINK TO ER DIAGRAM
The owner of this room rents the room to tourist and people who visit the area for a couple of days and need a place to spend a couple of days. Each guest needs to make a reservation and there's only one room available.
So I came up with this entity relationship diagram indicating all entities and relationships.
Questions
I'm wondering if the booking entity requires two foreign keys?
Also, Is overall design of the ER Diagram correct to an acceptable level including keys and attributes?
Your model has a few issues:
Each owner can own only one room. In the real world, owners could own many rooms. Even if, for now, you want a bijective relationship, I suggest you take that relationship out of the Owner table in case you want to change it later.
Each room has only one client ever. If the real world, rooms could house different clients during different bookings. Remove the relationship with the client from the Room table.
Each client has only one booking ever. In the real world, clients can have different bookings over time. Remove the relationship with booking from the Client table.
Booking_ID sounds like a surrogate key for bookings. Why is the client part of the primary key? I think it should be a non-prime attribute, and indicate that it will be in a foreign key constraint as already depicted on the diagram.
Booking has a foreign key constraint on Room_ID, but your diagram doesn't depict it.
Payment_ID in the Payment table is in a foreign key constraint, but it sounds like a surrogate key for that table. I think Payment_ID in the Booking table as well as Booking_ID in the Payment should be the ones constrained.
What's the purpose of the Payment table? It looks redundant, even if it isn't you can move those functional dependencies into the Bookings table, and then the Payment_ID can be eliminated.
If you remove the Payment_ID from the Booking table, you'll still have two keys which are in a foreign key constraint.
What is the real difference between one-to-many and many-to-one relationship? It is only reversed, kind of?
I can't find any 'good-and-easy-to-understand' tutorial about this topic other than this one: SQL for Beginners: Part 3 - Database Relationships
Yes, it is vice versa. It depends on which side of the relationship the entity is present on.
For example, if one department can employ several employees then department to employee is a one-to-many relationship (1 department employs many employees), while employee to department relationship is many-to-one (many employees work in one department).
More info on the relationship types:
Database Relationships - IBM DB2 documentation
From this page about Database Terminology
Most relations between tables are one-to-many.
Example:
One area can be the habitat of many readers.
One reader can have many subscriptions.
One newspaper can have many subscriptions.
A Many to One relation is the same as one-to-many, but from a different viewpoint.
Many readers live in one area.
Many subscriptions can be of one and the same reader.
Many subscriptions are for one and the same newspaper.
What is the real difference between one-to-many and many-to-one relationship?
There are conceptual differences between these terms that should help you visualize the data and also possible differences in the generated schema that should be fully understood. Mostly the difference is one of perspective though.
In a one-to-many relationship, the local table has one row that may be associated with many rows in another table. In the example from SQL for beginners, one Customer may be associated to many Orders.
In the opposite many-to-one relationship, the local table may have many rows that are associated with one row in another table. In our example, many Orders may be associated to one Customer. This conceptual difference is important for mental representation.
In addition, the schema which supports the relationship may be represented differently in the Customer and Order tables. For example, if the customer has columns id and name:
id,name
1,Bill Smith
2,Jim Kenshaw
Then for a Order to be associated with a Customer, many SQL implementations add to the Order table a column which stores the id of the associated Customer (in this schema customer_id:
id,date,amount,customer_id
10,20160620,12.34,1
11,20160620,7.58,1
12,20160621,158.01,2
In the above data rows, if we look at the customer_id id column, we see that Bill Smith (customer-id #1) has 2 orders associated with him: one for $12.34 and one for $7.58. Jim Kenshaw (customer-id #2) has only 1 order for $158.01.
What is important to realize is that typically the one-to-many relationship doesn't actually add any columns to the table that is the "one". The Customer has no extra columns which describe the relationship with Order. In fact the Customer might also have a one-to-many relationship with ShippingAddress and SalesCall tables and yet have no additional columns added to the Customer table.
However, for a many-to-one relationship to be described, often an id column is added to the "many" table which is a foreign-key to the "one" table -- in this case a customer_id column is added to the Order. To associated order #10 for $12.34 to Bill Smith, we assign the customer_id column to Bill Smith's id 1.
However, it is also possible for there to be another table that describes the Customer and Order relationship, so that no additional fields need to be added to the Order table. Instead of adding a customer_id field to the Order table, there could be Customer_Order table that contains keys for both the Customer and Order.
customer_id,order_id
1,10
1,11
2,12
In this case, the one-to-many and many-to-one is all conceptual since there are no schema changes between them. Which mechanism depends on your schema and SQL implementation.
Hope this helps.
SQL
In SQL, there is only one kind of relationship, it is called a Reference. (Your front end may do helpful or confusing things [such as in some of the Answers], but that is a different story.)
A Foreign Key in one table (the referencing table)
References
a Primary Key in another table (the referenced table)
In SQL terms, Bar references Foo
Not the other way around
CREATE TABLE Foo (
Foo CHAR(10) NOT NULL, -- primary key
Name CHAR(30) NOT NULL
CONSTRAINT PK -- constraint name
PRIMARY KEY (Foo) -- pk
)
CREATE TABLE Bar (
Bar CHAR(10) NOT NULL, -- primary key
Foo CHAR(10) NOT NULL, -- foreign key to Foo
Name CHAR(30) NOT NULL
CONSTRAINT PK -- constraint name
PRIMARY KEY (Bar), -- pk
CONSTRAINT Foo_HasMany_Bars -- constraint name
FOREIGN KEY (Foo) -- fk in (this) referencing table
REFERENCES Foo(Foo) -- pk in referenced table
)
Since Foo.Foo is a Primary Key, it is unique, there is only one row for any given value of Foo
Since Bar.Foo is a Reference, a Foreign Key, and there is no unique index on it, there can be many rows for any given value of Foo
Therefore the relation Foo::Bar is one-to-many
Now you can perceive (look at) the relation the other way around, Bar::Foo is many-to-one
But do not let that confuse you: for any one Bar row, there is just one Foo row that it References
In SQL, that is all we have. That is all that is necessary.
What is the real difference between one to many and many to one relationship?
There is only one relation, therefore there is no difference. Perception (from one "end" or the other "end") or reading it backwards, does not change the relation.
Cardinality
Cardinality is declared first in the data model, which means Logical and Physical (the intent), and then in the implementation (the intent realised).
One to zero-to-many
In SQL that (the above) is all that is required.
One to one-to-many
You need a Transaction to enforce the one in the Referencing table.
One to zero-to-one
You need in Bar:
CONSTRAINT AK -- constraint name
UNIQUE (Foo) -- unique column, which makes it an Alternate Key
One to one
You need a Transaction to enforce the one in the Referencing table.
Many-to-Many
There is no such thing at the Physical level (recall, there is only one type of relation in SQL).
At the early Logical levels during the modelling exercise, it is convenient to draw such a relation. Before the model gets close to implementation, it had better be elevated to using only things that can exist. Such a relation is resolved by implementing an Associative Table at the physical [DDL] level.
There is no difference. It's just a matter of language and preference as to which way round you state the relationship.
Answer to your first question is : both are similar,
Answer to your second question is: one-to-many --> a MAN(MAN table) may have more than one wife(WOMEN table) many-to-one --> more than one women have married one MAN.
Now if you want to relate this relation with two tables MAN and WOMEN, one MAN table row may have many relations with rows in the WOMEN table. hope it clear.
One-to-Many and Many-to-One are similar in Multiplicity but not Aspect (i.e. Directionality).
The mapping of Associations between entity classes and the Relationships between tables. There are two categories of Relationships:
Multiplicity (ER term: cardinality)
One-to-one relationships (abbreviated 1:1): Example Husband and Wife
One-to-Many relationships (abbreviated 1:N): Example Mother and Children
Many-to-Many relationships (abbreviated M:N): Example Student and Subject
Directionality : Not affect on mapping but makes difference on how we can access data.
Uni-directional relationships: A relationship field or property that refers to the other entity.
Bi-directional relationships: Each entity has a relationship field or property that refers to the other entity.
This is an excellent question, according to my experience, in ERD diagrams and relational databases direction is implied. In RDBMS you always define Many-To->One (trivial case One-To->One) relationships. The Many side of the relationship, a.k.a children, references the One side, a.k.a parent and you implement this with a Foreign Key constraint. Technically speaking you have to access an index, fetch the Primary Key record of the One side and then visit this record to get more information.
You cannot do this the other way around unless we are speaking about Object-Relational DBMS such as Postgres, Intersystems Cache, etc. These DBMS allow you to define a bi-directional relationship between the two entities (tables). In that case accessing records the other way around, i.e. One--To-->Many is achieved by using an array of references (children). In ORMs you have classes that reference each other the same way we described here.
WARNING: Most RDBMS in the IT market are NOT relational database management systems in the strict sense, think about null values, duplicate records etc, many of these allowed features break the definition of what a Relation is.
There's no practical difference. Just use the relationship which makes the most sense given the way you see your problem as Devendra illustrated.
One-to-many and Many-to-one relationship is talking about the same logical relationship, eg an Owner may have many Homes, but a Home can only have one Owner.
So in this example Owner is the One, and Homes are the Many.
Each Home always has an owner_id (eg the Foreign Key) as an extra column.
The difference in implementation between these two, is which table defines the relationship.
In One-to-Many, the Owner is where the relationship is defined. Eg, owner1.homes lists all the homes with owner1's owner_id
In Many-to-One, the Home is where the relationship is defined. Eg, home1.owner lists owner1's owner_id.
I dont actually know in what instance you would implement the many-to-one arrangement, because it seems a bit redundant as you already know the owner_id. Perhaps its related to cleanness of deletions and changes.
---One to Many--- A Parent can have two or more children.
---Many to one--- Those 3 children can have a single Parent
Both are similar. This can be used according to the need. If you want to find children for a particular parent, then you can go with One-To-Many. Or else, want to find parents for twins, you may go with Many-To-One.
The easiest explanation I can give for this relationship is by piggybacking on evendra D. Chavan'sanswer.
Using the department and employee relationship
A department can have multiple employees, so from the employee side, it's one-to-many relationship, and from the department side it's many-to-one relationship
But if an employee can also belong to more than one department, we can also say from the employee side it's now many as opposed to one, so the relationship becomes many-to-many
In order words, a simple understanding would be, we can state that a relationship is many-to-many if one-to-many can be viewed from both sides
that is if;
one employee can belong to many departments (one-to-many)
one department can have many employees (one-to-many)
I am new to SQL and only have experience using SQLAlchemy. The documentation on relationships in SQLAlchemy does a good job explaining this, in my opinion.
You may find some clarity by reading this part
Also, I had to come up with my own example to think through this. I'll try to explain without writing a bunch of code for simplicity.
table Vehicle
column (name)
table Manufacturer
column (name)
A Vehicle can only have One manufacturer (Ford, Tesla, BMW etc.)
Manufacturers can make many Vehicles
Ford
Ford makes Mustang
Ford makes F-150
Ford makes Focus
Tesla
Tesla makes Model S
Tesla makes Model X
Tesla makes Roadster
When looking at the database rows you will want to decide if you want a column that references the other side of the relationship. This is where the SQLAlchemy documentation brings in the difference between backref vs. back_populates. I understand that is the difference between having a column in the table to reference the other side of the relationship or not having a column to reference the other side.
I hope this helps, and even more so, I hope I am accurate in the way I learned and understand this.
I have read most of the answer. The problem is not the relationship here at all. If you look at One to Many or Many to One conceptually, it is just a reversible relationship. HOWEVER, while implementing the concept in your software or application it differs a lot.
In case of Many to One, we often desire the table that has Many aspect to be written first and we desire it to associate with the table containing One aspect. If you convert Many to One concept into One to Many, you will have hard time writing the One aspect table first in your code. Since, the relationship is defined while you engineer the database, Many aspect table will seek for the One aspect table data for integrity. So if you are planning to do it by using foreign key -> unique key or foreign key -> primary key, Many to One implementation will be different even if you consider it as a One to Many.
I personally make associations without using actual relationship concepts in many cases. There is no such boundaries as to use Database concept to form relationship every time. Just make sure that your database integrity is maintained as you want, it is indexed properly for your search needs and is decently normalized.
one-to-many has parent class contains n number of childrens so it is a collection mapping.
many-to-one has n number of childrens contains one parent so it is a object mapping
Suppose you have these tables: RestaurantChains, Restaurants, MenuItems - with the obvious relations between them. Now, you have tables Comments and Ratings, which store the customer comments/ratings about chains, restaurants and menu items. What would be the best way to link these tables? The obvious solutions could be:
Use columns OwnerType and OwnerID in the tables Comments and Ratings, but now I can't add foreign keys to link comments/ratings with the objects they are ment for
Create separate tables of Comments and Ratings for each table, e.g. MenuItemRatings, MenuItemComments etc. This solution has the advantage that all the correct foreign keys are present and has the obvious disadavantage of having lots and lots of tables with basically the same structure.
So, which solution works better? Or is there even a better solution that I don't know about?
Since comments about a menu item are different from comments about a restaurant (even if they happen to share the same structure) I would put them in separate tables and have the appropriate FKs to enforce some data integrity in your database.
I don't know why there is an aversion to having more tables in your database. Unless you're going from 50 tables to 50,000 tables you're not going to see a performance problem due to large catalog tables (and having more, smaller tables in this case should actually give you better performance). I would also tend to think that it would be a lot clearer to understand when dealing with tables called "Menu_Item_Comments" and "Restaurant_Comments" than it would to deal with a table called "Comments" and not knowing what exactly is really in it just by the name of it.
How about this alt text http://www.freeimagehosting.net/uploads/8241ff5c76.png
Have a single Comments/Rating table for all the objects and dont use automatically generated foreign keys. The key in the ratings table eg RatingID can be placed in a field in Restaurant, Chain, Menuitems table and they can all point to the same table, they are still foreign keys.
If you need to know in reverse what object the review relates to you would need to have a field specifying the type of review it was, but that should be all.
Use a single table for comments and use GUID's as primary keys for your entites.
Then you can select comments without even knowing beforehand where they belong to:
SELECT CommentText
FROM Comments c, Restaurants r
WHERE c.Source = r.Id
SELECT CommentText
FROM Comments c, Chains ch
WHERE c.Source = ch.Id
etc.
You can't use foreign keys for comments, of course, but it's not that comments cannot live without foreign keys.
You may clean orphaned comments in triggers but there's nothing bad if some of them are left.
You amy also create a global Entity table (with a single GUID column), make your Chains, Restaurants, MenuItems and Comments refer to that table with a FOREING KEY ON DELETE CASCADE, and when DELETE'ing, say, a restaurant, delete it from that table instead. It will delete both a restaurant and all comments on it, and you still have your integrity.
If you want to take advantage of foreign key constraint and normalize the attributes of comments (and ratings) across base tables, you may need to create relationship tables between base tables and comments (and ratings).
e.g. for Restaurants and Comments:
Restaurants
id (PK)
(attributes of restaurants...)
RestaurantComments
id (PK)
restaurantid (FK to Restaurants)
commentid (FK to Comments)
Comments
id (PK)
(attributes of comments...)