Cross-Microservice Authorization and Authentication - authentication

Suppose we have a number of (stateless, HTTP-based) (micro)services and a bunch of "daemons", which do all kinds of background processing by actually using said services.
Now, I want to have a way for services and daemons to be able to mutually authenticate and authorize. For example, a daemon that performs full-text indexing of Orders needs:
Read-only access to the Orders, Customers (which itself needs read-only access to Companies service) and Inventory services
Read and write access to the OrdersSearch service in order to be able to update the full-text index.
There are also applications, which operate "on behalf" of the user. For example, Inventory web app needs read and write access to the Inventory service, but the Inventory service itself needs to verify permissions of the user operating the application.
All that said, how do I achieve what I just described? I'd prefer not to use gigantic enterprisey frameworks or standards. From what I've read, Two-Legged OAuth2 is what I need, but I'm not exactly sure.
I was thinkinking of establishing an Authorization service which will be used to answer questions like "Hey, I'm Inventory service. What permissions the Customer service that is calling me right now has for me?", but that has two major weak with distributing shared secrets.

Authentication:
I imagine an authentication service where a requesting API signs its request using an established protocol: e.g. concatenating parts of the request with a expirable-NONCE and application ID then hashing it to create a signature. This signature is then encrypted with a private key. All requests must contain this encrypted signature and the NONCE as well an application identifier. The receiving service then does a lookup for the requesting application's public-key. After verifying the NONCE has not expired, the receiving service decrypts the digest using the public key and verifies the signature is valid (by repeating the signing process and coming to the same signature). A service would be required for obtaining the public key. A service can cache the application ID to public key mapping.
Authorization:
This can be done using some sort of role based access control scheme. Another service can be used to lookup whether the requesting service has access to the resources being requested.
I think both the authorization and authentication can be done internally, depending on time and money and need for specialization. If you are using Java take a look at Spring Security. If you decide to create custom code please justify it to your managers and get buy in. Do a thorough search online for any other solution and include in your write-up as to why it would not fit and that a custom solution is still required.

Related

Implementing public API keys with microservices

For most client applications and UI approaches JWTs seem to be a good way to carry tokens for an OAuth based approach. This allows decoupling of a User/Auth service and the services that are actually being accessed.
Given this architecture
My question is: in the case of public APIs (ie Github or Slack) where a bearer key is generated with specific roles. How is that key authorized in a microservice architecture? Do those types of keys just require that the Auth service gets queried with every request?
Could an API gateway mitigate this? I would like to understand if a solution exists where there is minimal communication between services. Thank you!
Normally, this is solved using scopes. The scopes are permissions given to a user to do certain operations,for example there will be a scope for read a repository, another for update it, another one for delete etc..
These scopes are tied to the token and normally are requested by the user himself or added automatically depending on the user type. And the same as the authentication process, they could be included in the token itself coded as a claim in a jwt or they could be requested or checked by calling an oauth server when one operation is requested.
The advantages of include them in jwt is that there is not need to call an external server every time an operation is requested so there is a lower latency and less bandwith is required, also you remove a point of failure. Obviously if this solution is used the token must be properly signed or even encrypted to avoid possible manipulations.
However it has also drawbacks, and the most dangerous one is that the token cannot be revoked because this information cannot be included in the token and the service that check if the token is valid only can access the data contained in the token itself. Because of this, this kind of tokens are normally issued with a little expiry time so in case of the token is stolen, the validity of it will be very limited

Is there a way to secure an API key on a frontend page?

My service allow any HTML documents to be converted to PDF using a POST request.
It is mostly used on the backend of my client's server and thus, the API key used for the communication is kept private.
Now, I'm thinking of a way to let my client's visitors be able to call my service on behalf of my client API key, without exposing this secure API Key.
My main issue here is security. If my client add an XHR POST requests that contains the API key, someone can take that API key and use it for their own purpose and abusing my client's account.
I could filter by domain, but this is easily spoofed so it's not possible.
I was wondering if there was a way to call a private service and be identified without risking its identity to be stolen, from the client ('s client) side?
If you're providing this sublet for authenticated users, then it's fairly trivial to give them unique keys (something that hashes their user ID or session against the API key and an initial timestamp, and checks it / logs it / looks for brutes before accessing the API). If you're doing it on the open web, without any kind of user authentication, then rate limiting gets very tricky indeed. Generally you'd want to use a combination of session hashes, IP address, operating system and browser data to create an anonymous profile that gets a temporary key on the frontend. One fairly solid way to do this is to force users through a CAPTCHA before serving a temporary key that allows them a limited number of uses of the permanent key. Any user whose ip/browser/session matches the existing attributes of a known client key is shunted to that one (and gets to skip the CAPTCHA); anyone who doesn't match an existing profile gets the CAPTCHA. That makes you a less attractive target for spoofing. On top of that, you should always rate-limit the entire thing, within a reasonable number of hits per day based on what kind of traffic you expect (or can afford), just so you don't have any surprises. This is the minimal security you'd want if your client's money is on the line every time their API key is used. It will require a simple database to store these "profiles", track usage, check for brutes and maintain the currently valid client keys. Client keys should always be expired regularly - either with a time diff against when they were created, or a regular cron process, or a maximum number of uses, etc.
One other thing I frequently do is rate-limit based on a curve. If I think 5 uses per minute is reasonable, for example, then after 5 uses in a minute from a session, each usage adds a delay of a fraction of a second * the number of uses in the last minute, squared, before the data is served.
The best answer would be to put this all behind a login system and secure that.
Assuming that you are using OAuth kind of system, In that case, make use of Access Token Mechanism that provides access to private API/User's data on behalf of User(Client) without exposing his/her credentials or API Key(Authentication key), also the access token can be expired based on the time/usage.
Example: The access token is generated against a single endpoint that can be the Html Conversion endpoint and will be expired once the action completion.
https://auth0.com/docs/tokens/access-token
And following blog post would be helpful to architect your authentication system
https://templth.wordpress.com/2015/01/05/implementing-authentication-with-tokens-for-restful-applications/
there is no good way to do front-end secure storage but my recommendation is :
is an API that used HMAC signing of requests in combination with OAuth authentication. The API key is actually a signing key. they key does not get transferred. The API key can still get found on the front-end but it becomes useless because you still need the OAuth token to send a valid request.
i know users will have to login in, but you can see this as an advantage because atleast you can log who is using the app by getting information from oauth.
please consider back-end secure storage!
You can use JWT tokens in my opinion. On the basis of username, password or any other info you can generate unique jwt tokens for different users.
Anyone can decipher these jwt tokens but not he unique security token.
If you want to add more more security to tokens, use JWE, encrypted web tokens.
More about these schemes can be found at https://medium.facilelogin.com/jwt-jws-and-jwe-for-not-so-dummies-b63310d201a3
Hashing is a decent option and should be done anyway, but for a fully secure method that wouldn't add too much complexity, you could simply abstract away from the authorization/API key by building your own API to interface with the API. This way you could both limit the kinds of things that can be done with the API key and also completely obscure the API key from the user
I don't think you should always go for user auth or JWT, it just doesn't fit all use cases. The idea of using a Captcha is interesting but also somewhat complex.
If complexity is not an issue I would rather use an infrastructure approach, I'm most familiar with AWS so I'll focus on that. Assuming you can change the host of your front end you can have your site hosted on an S3 bucket, served through a CDN, and create a proxy Lambda function that will hold the logic to call your API and store the API key as an encrypted environment variable. This Lambda you call through an API Gateway that can only be called by a specific IAM role which the S3 bucket also uses. You can also use a Cognito User Pool without authentication.
Going back to a simpler alternative the Captcha approach can be implemented as an attestation provider. I know of two services that do this, Firebase and KOR Connect. Due to Firebase using this approach only for their own resources as of the time of this writing I much rather use KOR Connect as it’s a very simple middleware that basically solves this issue. I won't go into detail about these services as it’s not the main concern of this topic but you can check the documentation their respective links.

Should I use data contained in an authentication JWT on the client-side?

A server provides a JWT to the client during authentication. That JWT contains information which is then later used by the server. For example, JWT may contain permissions array with the list of all permissions granted to a specific user.
Is it considered bad practice, if client parses the JWT and uses the permissions information contained within it? Is it better for client to make additional call to server (GET /permissions, for example) and behave according to that response?
This will strongly depend on a lot of small details; I'll try not to forget anything, but in theory it should be fine to do so and if certain conditions are met I would not consider it a bad practice.
OAuth2 states that access tokens should be opaque to clients, but JWT is just a token format (Learn JSON Web Tokens) and it's usage in other circumstances does not imply the same rules as OAuth2.
Also note that getting the information from an additional request has the same end result with the additional overhead of one more call. There would be a slight benefit if permissions are very volatile given you could repeat the calls.
However, the important part is more focused on what you mean by the client and how would the client use that information so I'll elaborate on this.
Assumptions:
the client you mention can be deployed as browser-based application (SPA's), native application or be some server-side component acting as a client.
both the server and client are controlled by the same entity.
the client and server components can be seen as a single application, that is, for an end-user the fact there's client and server components makes no difference; they use them as a whole.
Explanation
In this situation the token issued by the server is just a way for the client to later access protected resources without requiring explicit user authentication again; it's a mechanism to maintain a session between the two components.
Given the same entity controls both the client and server, it's acceptable to treat the received token as a whitebox instead of a blackbox. The client can then interpret the information in the token and take advantage of it to provide a better experience for the end-user. However, this implies that the server will need to continue to validate the token and it's permissions accordingly; any interpretation of the data by the client is purely to provide optional functionality.
Furthermore, for clients deployed to hostile environments like it would be the case for a SPA application the decisions taken by looking into the data must only result in purely aesthetic decisions, as the user could fake the permissions data. For example, you could use it to conditionally hide/disable some user interface just so that the user wouldn't have to click it to find out it wasn't allowed to do so.
A good analogy would be Javascript based input validation in web forms; you should do it for better user experience, but the server will need to do it again because the user can bypass the Javascript validation.

Securing REST API that will be accessed by diffrent clients

I have developed a REST/JSON API. The API exposes a lot of features. The API will be consumed by applications we design internally (mobile apps and web apps), by applications designed by our resellers and by applications designed by businesses. I am looking at securing the application by implementing authentication and authorization. I have 'googled' a lot but my research has left me with more questions than answers.
Our internal application will be used by end users registered on the application. In essence, our application is just a client taking request from the end user, taking it to the REST API and retrieving the data for the end user. Our internal application should be able to perform all the operations exposed by the REST API. What is the best way to handle user login on our internal application? HTTP Basic over SSL or OAuth?
Our reseller applications can create users like they own the users but ultimately the user details get stored in our database. The reseller application will just act as a client taking request from the user and fetching user data. Our resellers applications should only be restricted to some operations of the REST API. What security mechanism will I use to implement this kind of authorization and user login?
I hope my question is clear. Thanks for the help.
From what I understood in reading this there are two parts to your question:
What is the best authentication method for my API?
I recently developed an authentication system for an API that was modelled on OAuth but didn't have every single one of their specifications. The system was basically the same as what Amazon use for their API. [This article]1 is very helpful if you want a secure API authentication model without having to use OAuth.
The model uses these principles:
Authentication data will be passed with every request to the API server
Requests will include a Unix timestamp from when it was generated
The entire request (including the timestamp) will have an HMAC hash generated and sent alongside the rest of the data. The hash is generated using a private key that only the API server and the API client know.
The API takes the data (including the timestamp), generates an HMAC hash using the private key for that user (identified by a user ID, user name, public API key, whatever) and compares it to the hash sent with the request. If this was successful, regular authentication proceeds and the request is processed. Note: the API will check the timestamp and compare it to its own to make sure the request has occured within a valid timeframe of, for example, 30 seconds, 5 minutes, 10 minutes, etc.
Of course, you can use regular HTTP authentication over SSL/HTTPS also, but I find this way to be very good because you achieve a high level of security without needing to implement every aspect of the OAuth protocol.
How you authenticate is up to you essentially. I prefer to go with methods employed by large, trustworthy organisations (such as Amazon). I personally didn't want to go the whole hog with OAuth like Twitter, Facebook etc.
How should I allow different users to access different endpoints in my API?
You should have an internal map in your API server which contains records allowing or denying specific API accounts from accessing certain endpoints. In my API server I decided that all endpoints would be "allow" by default, and I would specify which accounts would not be able to access certain endpoints.
You could also set up different groups or types of API access accounts which could have group permissions like this.
My suggestion would be to [read this article]2 twice, or three times, then read it again. Then, implement the methods suggested within.
Personally, I think the best method for ensuring as much security as possible is to restrict absolutely everything in regards to the request to be within a set of boundaries that you define, e.g. I want this endpoint to only be accessible by GET HTTP requests (all other HTTP methods will throw an error), up to 3 times daily per account, within a 30 second timeframe of request to server, only allow a narrow range of data to be returned, etc.
Limiting the HTTP method is very important to reduce the risk of your API doing things it shouldn't, especially with a RESTful API as endpoints can be used to do multiple things depending on the request method. You can even set your permissions for each API account to restrict certain methods on each endpoint, e.g. API user xxx can GET information from an endpoint but cannot POST, PUT, PATCH etc, or API user xxx2 can POST data but cannot GET any, etc.
[EDIT] 1 and 2: www.thebuzzmedia.com/designing-a-secure-rest-api-without-oauth-authentication/ (not completely removing the link but keeping the url unlinked as it no longer works/redirects to random sites)

Creating an API for mobile applications - Authentication and Authorization

Overview
I'm looking to create a (REST) API for my application. The initial/primary purpose will be for consumption by mobile apps (iPhone, Android, Symbian, etc). I've been looking into different mechanisms for authentication and authorization for web-based APIs (by studying other implementations). I've got my head wrapped around most of the fundamental concepts but am still looking for guidance in a few areas. The last thing I want to do is reinvent the wheel, but I'm not finding any standard solutions that fits my criteria (however my criteria my be misguided so feel free to critique that as well). Additionally, I want the API to be the same for all platforms/applications consuming it.
oAuth
I'll go ahead and throw out my objection to oAuth since I know that will likely be the first solution offered. For mobile applications (or more specifically non-web applications), it just seems wrong to leave the application (to go to a web-browser) for the authentication. Additionally, there is no way (I am aware of) for the browser to return the callback to the application (especially cross-platform). I know a couple of apps that do that, but it just feels wrong and gives a break in the application UX.
Requirements
User enters username/password into application.
Every API call is identified by the calling application.
Overhead is kept to a minimum and the auth aspect is intuitive for developers.
The mechanism is secure for both the end user (their login credentials are not exposed) as well as the developer (their application credentials are not exposed).
If possible, not require https (by no means a hard requirement).
My Current Thoughts on Implementation
An external developer will request an API account. They will receive an apikey and apisecret. Every request will require at minimum three parameters.
apikey - given to developer at regisration
timestamp - doubles as a unique identifier for each message for a given apikey
hash - a hash of the timestamp + the apisecret
The apikey is required to identify the application issuing the request. The timestamp acts similarly to the oauth_nonce and avoids/mitigates replay attacks. The hash ensures that request was actually issued from the owner of the given apikey.
For authenticated requests (ones done on the behalf of a user), I'm still undecided between going with an access_token route or a username and password hash combo. Either way, at some point a username/password combo will be required. So when it does, a hash of several pieces of information (apikey, apisecret, timestamp) + the password would be used. I'd love feedback on this aspect. FYI, they would have to hash the password first, since I don't store the passwords in my system without hashing.
Conclusion
FYI, this isn't a request for how to build/structure the API in general only how to handle the authentication and authorization from solely within an application.
Random Thoughts/Bonus Questions
For APIs that only require an apikey as part of the request, how do you prevent someone other than the apikey owner from being able to see the apikey (since sent in the clear) and make excessive requests to push them over usage limits? Maybe I'm just over thinking this, but shouldn't there be something to authenticate that a request was verified to the apikey owner? In my case, that was the purpose of the apisecret, it is never shown/transmitted without being hashed.
Speaking of hashes, what about md5 vs hmac-sha1? Does it really matter when all of the values are hashed with with sufficiently long data (ie. apisecret)?
I had been previously considering adding a per user/row salt to my users password hash. If I were to do that, how could the application be able to create a matching hash without knowing the salt used?
The way I'm thinking about doing the login part of this in my projects is:
before login the user requests a login_token from the server. These are generated and stored on the server on request, and probably have a limited lifetime.
to login the application calculates the hash of the users password, then hashes the password with the login_token to get a value, they then return both the login_token and the combined hash.
The server checks the login_token is one that it has generated, removing it from its list of valid login_tokens. The server then combines its stored hash of the user's password with the login_token and ensures that it matches the submitted combined token. If it matches you have authenticated your user.
Advantages of this are that you never store the user's password on the server, the password is never passed in the clear, the password hash is only passed in the clear on account creation (though there may be ways around this), and it should be safe from replay attacks as the login_token is removed from the DB on use.
That's a whole lot of questions in one, I guess quite a few people didn't manage to read all the way to the end :)
My experience of web service authentication is that people usually overengineer it, and the problems are only the same as you would encounter on a web page. Possible very simple options would include https for the login step, return a token, require it to be included with future requests. You could also use http basic authentication, and just pass stuff in the header. For added security, rotate/expire the tokens frequently, check the requests are coming from the same IP block (this could get messy though as mobile users move between cells), combine with API key or similar. Alternatively, do the "request key" step of oauth (someone suggested this in a previous answer already and it's a good idea) before authenticating the user, and use that as a required key to generate the access token.
An alternative which I haven't used yet but I've heard a lot about as a device-friendly alternative to oAuth is xAuth. Have a look at it and if you use it then I'd be really interested to hear what your impressions are.
For hashing, sha1 is a bit better but don't get hung up about it - whatever the devices can easily (and quickly in a performance sense) implement is probably fine.
Hope that helps, good luck :)
So what you're after is some kind of server side authentication mechanism that will handle the authentication and authorisation aspects of a mobile application?
Assuming this is the case, then I would approach it as follows (but only 'cos I'm a Java developer so a C# guy would do it differently):
The RESTful authentication and authorisation service
This will work only over HTTPS to prevent eavesdropping.
It will be based on a combination of RESTEasy, Spring Security and CAS (for single sign on across multiple applications).
It will work with both browsers and web-enabled client applications
There will be a web-based account management interface to allow users to edit their details, and admins (for particular applications) to change authorisation levels
The client side security library/application
For each supported platform (e.g.
Symbian, Android, iOS etc) create a
suitable implementation of the
security library in the native
language of the platform (e.g. Java,
ObjectiveC, C etc)
The library
should manage the HTTPS request
formation using the available APIs
for the given platform (e.g. Java
uses URLConnection etc)
Consumers of the general authentication and
authorisation library ('cos that's
all it is) will code to a specific
interface and won't be happy if it
ever changes so make sure it's very
flexible. Follow existing design
choices such as Spring Security.
So now that the view from 30,000ft is complete how do you go about doing it? Well, it's not that hard to create an authentication and authorisation system based on the listed technologies on the server side with a browser client. In combination with HTTPS, the frameworks will provide a secure process based on a shared token (usually presented as a cookie) generated by the authentication process and used whenever the user wishes to do something. This token is presented by the client to the server whenever any request takes place.
In the case of the local mobile application, it seems that you're after a solution that does the following:
Client application has a defined Access Control List (ACL) controlling runtime access to method calls. For example, a given user can read a collection from a method, but their ACL only permits access to objects that have a Q in their name so some data in the collection is quiety pulled by the security interceptor. In Java this is straightforward, you just use the Spring Security annotations on the calling code and implement a suitable ACL response process. In other languages, you're on your own and will probably need to provide boilerplate security code that calls into your security library. If the language supports AOP (Aspect Oriented Programming) then use it to the fullest for this situation.
The security library caches the complete list of authorisations into it's private memory for the current application so that it doesn't have to remain connected. Depending on the length of the login session, this could be a one-off operation that never gets repeated.
Whatever you do, don't try to invent your own security protocol, or use security by obscurity. You'll never be able to write a better algorithm for this than those that are currently available and free. Also, people trust well known algorithms. So if you say that your security library provides authorisation and authentication for local mobile applications using a combination of SSL, HTTPS, SpringSecurity and AES encrypted tokens then you'll immediately have creditibility in the marketplace.
Hope this helps, and good luck with your venture. If you would like more info, let me know - I've written quite a few web applications based on Spring Security, ACLs and the like.
Twitter addressed the external application issue in oAuth by supporting a variant they call xAuth. Unfortunately there's already a plethora of other schemes with this name so it can be confusing to sort out.
The protocol is oAuth, except it skips the request token phase and simply immediately issues an access token pair upon receipt of a username and password. (Starting at step E here.) This initial request and response must be secured - it's sending the username and password in plaintext and receiving back the access token and secret token. Once the access token pair has been configured, whether the initial token exchange was via the oAuth model or the xAuth model is irrelevant to both the client and server for the rest of the session. This has the advantage that you can leverage existing oAuth infrastructure and have very nearly the same implementation for mobile/web/desktop applications. The main disadvantage is that the application is granted access to the client's user name and password, but it appears like your requirements mandate this approach.
In any case, I'd like to agree with your intuition and that of several other answerers here: don't try to build something new from scratch. Security protocols can be easy to start but are always hard to do well, and the more convoluted they become the less likely your third-party developers are to be able to implement against them. Your hypothetical protocol is very similar to o(x)Auth - api_key/api_secret, nonce, sha1 hashing - but instead of being able to use one of the many existing libraries your developers are going to need to roll their own.
Super late to the party but I wanted to throw in some additional points to consider for anyone interested in this issue. I work for a company doing mobile API security solutions (approov) so this whole area is definitely relevant to my interests.
To start with, the most important thing to consider when trying to secure a mobile API is how much it is worth to you. The right solution for a bank is different to the right solution for someone just doing things for fun.
In the proposed solution you mention that a minimum of three parameters will be required:
apikey - given to developer at registration
timestamp - doubles as a unique identifier for each message for a given apikey
hash - a hash of the timestamp + the apisecret
The implication of this is that for some API calls no username/password is required. This can be useful for applications where you don't want to force a login (browsing in online shops for example).
This is a slightly different problem to the one of user authentication and is more like authentication or attestation of the software. There is no user, but you still want to ensure that there is no malicious access to your API. So you use your API secret to sign the traffic and identify the code accessing the API as genuine. The potential problem with this solution is that you then have to give away the secret inside every version of the app. If someone can extract the secret they can use your API, impersonating your software but doing whatever they like.
To counter that threat there are a bunch of things you can do depending on how valuable the data is. Obfuscation is a simple way to make it harder to extract the secret. There are tools that will do that for you, more so for Android, but you still have to have code that generates your hash and a sufficiently skilled individual can always just call the function that does the hashing directly.
Another way to mitigate against excessive use of an API that doesn't require a login is to throttle the traffic and potentially identify and block suspect IP addresses. The amount of effort you want to go to will largely depend upon how valuble your data is.
Beyond that you can easily start getting into the domain of my day job. Anyway, it's another aspect of securing APIs that I think is important and wanted to flag up.