Guice Names.bindProperties(binder(), properties) on output of a module? - properties

I use an external service to provide properties, but want to make those properties available as #Named(..) vars. Trying to do this in a configure method fails with npe:
Names.bindProperties(binder(), myPropRetriever.getProperties());
is failing because the myPropRetriever isn't appearing until guice has done it's work. I can see why this makes sense - anyone know of any funky hacks that might work around though? Would be handy in this instance..

Thanks to durron597 for the pointer to the related question which gave me enough to figure out. The answer is to use a child injector to take action on the previous injectors output. Example below:
Injector propInjector = Guice.createInjector(new PropertiesModule());
PropertiesService propService = propInjector.getInstance(PropertiesService.class);
Injector injector = propInjector.createChildInjector(new MyModule(Objects.firstNonNull(propService.getProperties(), new Properties())));
Injector is now your injector for the remainder of the app.
And then in MyModule you can take action on the created objects:
public class MyModule extends AbstractModule {
private final Properties properties;
public MyModule(Properties properties){
this.properties=properties;
}
#Override
protected void configure() {
// export all the properties as bindings
Names.bindProperties(binder(), properties);
// move on to bindings
// bind(..);
}
}
In case it helps anyone else..!

Related

How do I mock Func<T> factory dependency to return different objects using AutoMock?

I'm trying to write a test for a class that has a constructor dependency on Func<T>. In order to complete successfully the function under test needs to create a number of separate objects of type T.
When running in production, AutoFac generates a new T every time factory() is called, however when writing a test using AutoMock it returns the same object when it is called again.
Test case below showing the difference in behaviour when using AutoFac and AutoMock. I'd expect both of these to pass, but the AutoMock one fails.
public class TestClass
{
private readonly Func<TestDep> factory;
public TestClass(Func<TestDep> factory)
{
this.factory = factory;
}
public TestDep Get()
{
return factory();
}
}
public class TestDep
{}
[TestMethod()]
public void TestIt()
{
using var autoMock = AutoMock.GetStrict();
var testClass = autoMock.Create<TestClass>();
var obj1 = testClass.Get();
var obj2 = testClass.Get();
Assert.AreNotEqual(obj1, obj2);
}
[TestMethod()]
public void TestIt2()
{
var builder = new ContainerBuilder();
builder.RegisterSource(new AnyConcreteTypeNotAlreadyRegisteredSource());
var container = builder.Build();
var testClass = container.Resolve<TestClass>();
var obj1 = testClass.Get();
var obj2 = testClass.Get();
Assert.AreNotEqual(obj1, obj2);
}
AutoMock (from the Autofac.Extras.Moq package) is primarily useful for setting up complex mocks. Which is to say, you have a single object with a lot of dependencies and it's really hard to set that object up because it doesn't have a parameterless constructor. Moq doesn't let you set up objects with constructor parameters by default, so having something that fills the gap is useful.
However, the mocks you get from it are treated like any other mock you might get from Moq. When you set up a mock instance with Moq, you're not getting a new one every time unless you also implement the factory logic yourself.
AutoMock is not for mocking Autofac behavior. The Func<T> support where Autofac calls a resolve operation on every call to the Func<T> - that's Autofac, not Moq.
It makes sense for AutoMock to use InstancePerLifetimeScope because, just like setting up mocks with plain Moq, you need to be able to get the mock instance back to configure it and validate against it. It would be much harder if it was new every time.
Obviously there are ways to work around that, and with a non-trivial amount of breaking changes you could probably implement InstancePerDependency semantics in there, but there's really not much value in doing that at this point since that's not really what this is for... and you could always create two different AutoMock instances to get two different mocks.
A much better way to go, in general, is to provide useful abstractions and use Autofac with mocks in the container.
For example, say you have something like...
public class ThingToTest
{
public ThingToTest(PackageSender sender) { /* ... */ }
}
public class PackageSender
{
public PackageSender(AddressChecker checker, DataContext context) { /* ... */ }
}
public class AddressChecker { }
public class DataContext { }
If you're trying to set up ThingToTest, you can see how also setting up a PackageSender is going to be complex, and you'd likely want something like AutoMock to handle that.
However, you can make your life easier by introducing an interface there.
public class ThingToTest
{
public ThingToTest(IPackageSender sender) { /* ... */ }
}
public interface IPackageSender { }
public class PackageSender : IPackageSender { }
By hiding all the complexity behind the interface, you now can mock just IPackageSender using plain Moq (or whatever other mocking framework you like, or even creating a manual stub implementation). You wouldn't even need to include Autofac in the mix because you could mock the dependency directly and pass it in.
Point being, you can design your way into making testing and setup easier, which is why, in the comments on your question, I asked why you were doing things that way (which, at the time of this writing, never did get answered). I would strongly recommend designing things to be easier to test if possible.

How to create a BaseClass that adds logging messages

I am using serenity BDD for my automation testing and Page Object Model for my framework. I have created a BasePage class which will be inherited by all the other Pages. I want to minimize the logging messages from the Pages by adding all the log.info messages to a central Base page. Example, when calling the click() method, I will log before click and after click methods as shown below in the basePage class:
public class BasePage extends PageObject{
private static final Logger log = LogManager.getLogger(BasePage.class.getClass());
private final WebElementFacade element;
public static void clickBtn(WebElementFacade btnName) {
log.info("About to click " + btnName + " button");
btnName.click();
log.info("Successfully clicked on " + btnName + " button.");
}
Later I figured that instead of individually trying to figure out in advance what actions the user will perform on the webElements, and write new methods for each action (like the one shown above), just implement WebDriverFacade interface, so that I get all the unimplemented method list in BasePage from WebDriverFacade and then write the log messages inside each of them, like so:
public class BasePage extends PageObject implements WebElementFacade{
private static final Logger log = LogManager.getLogger(BasePage.class.getClass());
private final WebElementFacade element;
#Override
public void submit() {
// TODO Auto-generated method stub
}
#Override
public void sendKeys(CharSequence... keysToSend) {
// TODO Auto-generated method stub
}
#Override
public String getTagName() {
// TODO Auto-generated method stub
return null;
}
#Override
public boolean isSelected() {
// TODO Auto-generated method stub
return false;
}
.
.
.
.
.
}
This will serve two purposes:
I will not have to create new methods for every action in BasePage class, example the 'clickBtn()' function in the first code
As I mentioned before, I will not have to figure out what method any other person who adds methods to my code might use and having to change the BasePage class to create the new actions. So basically less maintenance in the long run.
The problem I am facing is an error that I receive in the second use case:
The return types are incompatible for the inherited methods WebElementFacade.withTimeoutOf(int, TimeUnit), PageObject.withTimeoutOf(int, TimeUnit)
Now my question is:
How can solve this problem?
Is this the right way to do things or should I be going with the first method and have maintenance overhead.
Just figured that another scenario where this might be useful. To make sure that subclass methods do not use methods from pageObject and are forced to use the methods from BaseClass only. This can be done by wrapping the WebElementFacade and adding the log messages as an added functionality. Any thought on this would be appreciated.
Thank you!
Honestly it is a neat trick and if you get it working you should be proud.
I think I figured something similar out in a dynamic language.
But you are better off just adding the logging entries and learning the following.
How to name functions so you don't feel like they need renaming.
How to log clearly for debugging use.
This is because loggings power is in its flexibility.
When you learn how to dump something complex like a matrix so you can eye it and go uh-oh you are increasing your overall skills.
I apologize for not giving you code but I felt some "chase the other rabbit" advice was better.

How to Solve Circular Dependency

Hi I have a problem with the structure of my code, it somehow goes into Circular Dependency. Here is an explanation of how my code looks like:
I have a ProjectA contains BaseProcessor and BaseProcessor has a reference to a class called Structure in ProjectB. Inside BaseProcessor, there is an instance of Structure as a variable.
In projectB there are someother classes such as Pricing, Transaction etc.
Every class in ProjectB has a base class called BaseStructure i.e. Structure, Pricing and Transaction classes all inherited from BaseStructure.
Now in Pricing and Transaction classes, I want to call a method in BaseProcessor class from BaseStructure class which causing Circular Dependency.
What I have tried is:
Using Unity, but I didn't figure out how to make it work because I try to use function like:
unityContainer.ReferenceType(IBaseProcessor, BaseProcessor)
in BaseStructure then it will need a reference of BaseProcessor which also cause Circular Dependency.
And I've also tried creating an interface of IBaseProcessor and create a function(the function I want to call) declaration in this interface. And let both BaseProcessor and BaseStructure inherit this interface. But how can I call the function in Pricing and Transaction class without create an instance of BaseProcessor?
Can anyone please tell me how to resolve this problem other than using reflection?
Any help will be much appreciated. Thanks :)
You could use the lazy resolution:
public class Pricing {
private Lazy<BaseProcessor> proc;
public Pricing(Lazy<BaseProcessor> proc) {
this.proc = proc;
}
void Foo() {
this.proc.Value.DoSomethin();
}
}
Note that you haven't to register the Lazy because Unity will resolve it by BaseProcessor registration.
Your DI container can't help solving the circular reference, since it is the dependency structure of the application that prevents objects from being created. Even without a DI container, you can't construct your object graphs without some special 'tricks'.
Do note that in most cases cyclic dependency graphs are a sign of a design flaw in your application, so you might want to consider taking a very close look at your design and see if this can't be solved by extracting logic into separate classes.
But if this is not an option, there are basically two ways of resolving this cyclic dependency graph. Either you need to fallback to property injection, or need to postpone resolving the component with a factory, Func<T>, or like #onof proposed with a Lazy<T>.
Within these two flavors, there are a lot of possible ways to do this, for instance by falling back to property injection into your application (excuse my C#):
public class BaseStructure {
public BaseStructure(IDependency d1) { ... }
// Break the dependency cycle using a property
public IBaseProcessor Processor { get; set; }
}
This moves the IBaseProcessor dependency from the constructor to a property and allows you to set it after the graph is constructed. Here's an example of an object graph that is built manually:
var structure = new Structure(new SomeDependency());
var processor = new BaseProcessor(structure);
// Set the property after the graph has been constructed.
structure.Processor = processor;
A better option is to hide the property inside your Composition Root. This makes your application design cleaner, since you can keep using constructor injection. Example:
public class BaseStructure {
// vanilla constructor injection here
public BaseStructure(IDependency d1, IBaseProcessor processor) { ... }
}
// Defined inside your Composition Root.
private class CyclicDependencyBreakingProcessor : IBaseProcessor {
public IBaseProcessor WrappedProcessor { get; set; }
void IBaseProcessor.TheMethod() {
// forward the call to the real processor.
this.WrappedProcessor.TheMethod();
}
}
Now instead of injecting the BaseProcessor into your Structure, you inject the CyclicDependencyBreakingProcessor, which will be further initialized after the construction of the graph:
var cyclicBreaker = new CyclicDependencyBreakingProcessor();
var processor = new BaseProcessor(new Structure(new SomeDependency(), cyclicBreaker));
// Set the property after the graph has been constructed.
cyclicBreaker.WrappedProcessor = processor;
This is basically the same as before, but now the application stays oblivious from the fact that there is a cyclic dependency that needed to be broken.
Instead of using property injection, you can also use Lazy<T>, but just as with the property injection, it is best to hide this implementation detail inside your Composition Root, and don't let Lazy<T> values leak into your application, since this just adds noise to your application, which makes your code more complex and harder to test. Besides, the application shouldn't care that the dependency injection is delayed. Just as with Func<T> (and IEnumerable<T>), when injecting a Lazy<T> the dependency is defined with a particular implementation in mind and we're leaking implementation details. So it's better to do the following:
public class BaseStructure {
// vanilla constructor injection here
public BaseStructure(IDependency d1, IBaseProcessor processor) { ... }
}
// Defined inside your Composition Root.
public class CyclicDependencyBreakingProcessor : IBaseProcessor {
public CyclicDependencyBreakingBaseProcessor(Lazy<IBaseProcessor> processor) {...}
void IBaseProcessor.TheMethod() {
this.processor.Value.TheMethod();
}
}
With the following wiring:
IBaseProcessor value = null;
var cyclicBreaker = new CyclicDependencyBreakingProcessor(
new Lazy<IBaseProcessor>(() => value));
var processor = new BaseProcessor(new Structure(new SomeDependency(), cyclicBreaker));
// Set the value after the graph has been constructed.
value = processor;
Up until now I only showed how to build up the object graph manually. When doing this using a DI container, you usually want to let the DI container build up the complete graph for you, since this yields a more maintainable Composition Root. But this can make it a bit more tricky to break the cyclic dependencies. In most cases the trick is to register the component that you want to break with a caching lifestyle (basically anything else than transient). Per Web Request Lifestyle for instance. This allows you to get the same instance in a lazy fashion.
Using the last CyclicDependencyBreakingProcessor example, we can create the following Unity registration:
container.Register<BaseProcessor>(new PerRequestLifetimeManager());
container.RegisterType<IStructure, Structure>();
container.RegisterType<IDependency, SomeDependenc>();
container.Register<IBaseProcessor>(new InjectionFactory(c =>
new CyclicDependencyBreakingProcessor(
new Lazy<IBaseProcessor>(() => c.GetInstance<BaseProcessor>())));

wicket and AtUnit

I've started playing with Wicket and I've chosen Guice as dependency injection framework. Now I'm trying to learn how to write a unit test for a WebPage object.
I googled a bit and I've found this post but it mentioned AtUnit so I decided to give it a try.
My WebPage class looks like this
public class MyWebPage extends WebPage
{
#Inject MyService service;
public MyWebPage()
{
//here I build my components and use injected object.
service.get(id);
....
}
}
I created mock to replace any production MyServiceImpl with it and I guess that Guice in hand with AtUnit should inject it.
Now the problems are:
AtUnit expects that I mark target object with #Unit - that is all right as I can pass already created object to WicketTester
#Unit MyWebPage page = new MyWebPage();
wicketTester.startPage(page);
but usually I would call startPage with class name.
I think AtUnit expects as well that a target object is market with #Inject so AtUnit can create and manage it - but I get an org.apache.wicket.WicketRuntimeException: There is no application attached to current thread main. Can I instruct AtUnit to use application from wicketTester?
Because I don't use #Inject at MyWebPage (I think) all object that should be injected by Guice are null (in my example the service reference is null)
I really can't find anything about AtUnit inside Wicket environment. Am I doing something wrong, am I missing something?
I don't know AtUnit but I use wicket with guice and TestNG. I imagine that AtUnit should work the same way. The important point is the creation of the web application with the use of guice.
Here how I bind all this stuff together for my tests.
I have an abstract base class for all my tests:
public abstract class TesterWicket<T extends Component> {
#BeforeClass
public void buildMockedTester() {
System.out.println("TesterWww.buildMockedTester");
injector = Guice.createInjector(buildModules());
CoachWebApplicationFactory instance =
injector.getInstance(CoachWebApplicationFactory.class);
WebApplication application = instance.buildWebApplication();
tester = new WicketTester(application);
}
protected abstract List<Module> buildModules();
The initialization is done for every test class. The subclass defines the necessary modules for the test in the buildModules method.
In my IWebApplicationFactory I add the GuiceComponentInjector. That way, after all component instantiation, the fields annotated with #Inject are filled by Guice:
public class CoachWebApplicationFactory implements IWebApplicationFactory {
private static Logger LOG = LoggerFactory.getLogger(CoachWebApplicationFactory.class);
private final Injector injector;
#Inject
public CoachWebApplicationFactory(Injector injector) {
this.injector = injector;
}
public WebApplication createApplication(WicketFilter filter) {
WebApplication app = injector.getInstance(WebApplication.class);
Application.set(app);
app.addComponentInstantiationListener(new GuiceComponentInjector(app, injector));
return app;
}
}

Late binding with Ninject

I'm working on a framework extension which handles dynamic injection using Ninject as the IoC container, but I'm having some trouble trying to work out how to achieve this.
The expectation of my framework is that you'll pass in the IModule(s) so it can easily be used in MVC, WebForms, etc. So I have the class structured like this:
public class NinjectFactory : IFactory, IDisposable {
readonly IKernel kernel;
public NinjectFactory(IModule[] modules) {
kernel = new StandardKernel(modules);
}
}
This is fine, I can create an instance in a Unit Test and pass in a basic implementation of IModule (using the build in InlineModule which seems to be recommended for testing).
The problem is that it's not until runtime that I know the type(s) I need to inject, and they are requested through the framework I'm extending, in a method like this:
public IInterface Create(Type neededType) {
}
And here's where I'm stumped, I'm not sure the best way to check->create (if required)->return, I have this so far:
public IInterface Create(Type neededType) {
if(!kernel.Components.Has(neededType)) {
kernel.Components.Connect(neededType, new StandardBindingFactory());
}
}
This adds it to the components collection, but I can't work out if it's created an instance or how I create an instance and pass in arguments for the .ctor.
Am I going about this the right way, or is Ninject not even meant to be be used that way?
Unless you want to alter or extend the internals of Ninject, you don't need to add anything to the Components collection on the kernel. To determine if a binding is available for a type, you can do something like this:
Type neededType = ...;
IKernel kernel = ...;
var registry = kernel.Components.Get<IBindingRegistry>();
if (registry.Has(neededType)) {
// Ninject can activate the type
}
Very very late answer but Microsoft.Practices.Unity allows Late Binding via App.Config
Just in case someone comes across this question