Binary search tree operator overloading [] - binary-search-tree

Whenever i try to test the function I always get the value of the root and I dont know what's wrong with it.
Data& operator[] (int k) {
if(n==0) return root->value;
Node * temp= helperOper(root, n);
return temp->value;
}
Node * helperOper(Node * T, int& n) const{
if(T!=nil){
n--;
if(n==0) helperOper(T->left, n);
n--;
if (n==0) helperOper(T->right, n);
//n--;
return T;
}
return nil;
}
int main(){
BST<int> x;
x.insert(1);
x.insert(2);
x.insert(3);
cout << temp[2];
}

Related

I am creating a Dynamic array in class in c++ using malloc and realloc and getting assertion failure(Heap corruption detected)

I am creating a Dynamic array in class in c++ using malloc and realloc but i am getting assertion
Failure(Heap corruption detected).
I am getting error when calling destructor
I am using free but did not understand where the code went wrong
But after calling setIndexElement I am getting error
class DynamicArray1
{
public:
int *ptr;
int len;
DynamicArray1()
{
ptr = (int*)malloc(2 * sizeof(int));
}
void setIndexElement(int index,int val)
{
int newsize = size();
if (index > newsize)
{
ptr = (int *)realloc(ptr, sizeof(int)*index);
}
ptr[index] = val;
len = index;
}
~DynamicArray1()
{
free(ptr);
}
};
int main()
{
DynamicArray1 d;
d.setIndexElement(0, 10);
d.setIndexElement(1, 11);
d.setIndexElement(2, 4);
int x = d.newSize();
for(int i=0;i<=x;i++)
{
cout << d.getIndexval(i) << endl;
}
}

Exception thrown at 0x7A12FF80 (ucrtbased.dll) in Project 3.exe: 0xC0000005: Access violation reading location 0x00000000

I have attempted to run this code. Prior to running this, no warnings or errors exist but once it is executed I have an exception thrown and it stops the program from compiling. Here is my code and the error is in the subject line. The CDA file is being used as header file to create a Circular Dynamic Array that is going to be manipulated in Heaps.cpp. The heaps.cpp is to create a binary heap that is to be used in to create Binomial heaps, but that code has not been developed yet.
#include <iostream>
using namespace std;
template <class T>
class CDA
{
private:
int rear;
int size;
int capacity;
T* circArray;
int front;
bool ordered;
T placeHolder;
public:
CDA();
CDA(int s);
~CDA();
int Front();
T Data(int n);
T& operator[](int i);
void AddEnd(T v);
void AddFront(T v);
void DelEnd();
void DelFront();
int Length();
int Capacity();
int Clear();
bool Ordered();
int SetOrdered();
int S01(int n);
T Select(int k);
void InsertionSort();
void QuickSort();
void QuickSort1(int low, int high);
void CountingSort(int m);
int Search(T e);
void reSize();
void Shrink();
int BinarySearch(int left, int right, T e);
int QSortPartition(int low, int high);
void Swap(int* x, int* y);
int QSelPartition(int front, int rear);
T QuickSelect(int front, int rear, int k);
CDA<T>& operator=(const CDA& a);
CDA(const CDA& old);
int Median(int low, int high);
};
template <class T>
CDA<T>::CDA()
{
capacity = 1;
circArray = new T[capacity];
size = 0;
rear = size - 1;
front = -1;
ordered = false;
placeHolder = 0;
}
template <class T>
CDA<T>::CDA(int s)
{
size = s;
capacity = s;
circArray = new T[capacity];
front = 0;
rear = size - 1;
ordered = false;
}
template <class T>
CDA<T>::CDA(const CDA& a)
{
size = a.size;
capacity = a.capacity;
circArray = new T[a.capacity];
front = a.front;
rear = a.size - 1;
ordered = a.ordered;
for (int i = a.front; i < a.front + (a.size); i++)
{
circArray[i % capacity] = a.circArray[i % capacity];
}
}
template <class T>
CDA<T>::~CDA()
{
delete[]circArray;
}
template <class T>
T& CDA<T>::operator[](int i)
{
if (i > capacity)
{
cout << "Array index is out of bounds; exiting." << endl;
placeHolder = i;
cout << endl;
return placeHolder;
exit(0);
}
else
{
return circArray[(front + i) % capacity];
}
}
template <class T>
void CDA<T>::AddEnd(T v)
{
size++;
if (front == -1)
{
circArray[0] = v;
front++;
rear++;
return;
}
if (size > capacity)
{
reSize();
}
else if (front == -1)
{
front = 0;
rear = size - 1;
}
else
{
rear = (rear + 1) % capacity;
}
circArray[rear] = v;
}
template <class T>
void CDA<T>::AddFront(T v)
{
size++;
if (size > capacity)
{
reSize();
}
if (front == -1) //means the array is empty
{
front = 0;
rear = capacity % size;
}
else if (front == 0) //means something is in spot 0
{
front = capacity - 1; //puts front at the end and places the input there
}
else //go until it is back at zero
{
front--;
}
circArray[front] = v;
}
template <class T>
void CDA<T>::DelEnd()
{
size--;
if (size <= capacity / 4)
{
Shrink();
}
else if (rear == front)
{
front = -1;
rear = -1;
}
else
{
rear--;
}
}
template <class T>
void CDA<T>::DelFront()
{
size--;
double shrMeasure;
shrMeasure = capacity / 4.0;
if (size <= shrMeasure) // make an empty and shrink function
{
Shrink();
}
/*
else if (front == rear)
{
if (front == 0)
front = size - 1;
else
front++;
}
*/
else
{
if (front == size) //brings it full circle
{
front = 0;
}
else
{
front++;
}
}
if (front > capacity)
front = front % capacity;
}
template <class T>
int CDA<T>::Length()
{
return size;
}
template <class T>
int CDA<T>::Capacity()
{
return capacity;
}
template <class T>
int CDA<T>::Clear()
{
~CDA();
size = 1;
circArray[size] = NULL;
}
template <class T>
bool CDA<T>::Ordered()
{
return ordered;
}
template <class T>
int CDA<T>::SetOrdered()
{
for (int i = 1; i < size - 1; i++)
{
if (circArray[(i - 1)] > circArray[i])
{
ordered = false;
return -1;
}
}
ordered = true;
return 1;
}
template <class T>
T CDA<T>::Select(int k)
{
if (ordered == true)
{
return circArray[(front + k - 1) % capacity];
}
else
QuickSelect(front, front + (size - 1), k);
}
template <class T>
int CDA<T>::QSelPartition(int left, int right)
{
int pivot = circArray[right % capacity];
int x = left - 1;
//Swap(&circArray[pivIndex], &circArray[right]);
for (int i = left; i <= right - 1; i++)
{
if (circArray[i % capacity] <= pivot)
{
x++;
Swap(&circArray[x % capacity], &circArray[i % capacity]);
}
}
Swap(&circArray[(x + 1) % capacity], &circArray[right % capacity]);
return (x + 1);
}
template <class T>
T CDA<T>::QuickSelect(int left, int right, int k)
{
if (k > 0 && k <= (right - left) + 1)
{
int index = QSelPartition(left, right);
if (index - 1 == k - 1)
return circArray[index % capacity];
else if (index - 1 > k - 1)
return QuickSelect(left, index - 1, k);
else
return QuickSelect(index - 1, right, k - index + left - 1);
}
return -1;
}
template <class T>
void CDA<T>::InsertionSort() //must be utilized in quicksort
{
for (int i = front + 1; i < (front + size); i++)
{
int val = circArray[i % capacity];
int inc = (i - 1) % capacity;
while (inc >= 0 && circArray[inc] > val)
{
circArray[(inc + 1) % capacity] = circArray[inc];
inc--;
if (inc == -1)
{
inc = capacity - 1;
}
}
circArray[(inc + 1) % capacity] = val;
}
ordered = true;
}
template <class T>
void CDA<T>::QuickSort() // change to other quicksort before leaving the ferg
{
QuickSort1(front, front + (size - 1));
}
template <class T>
void CDA<T>::QuickSort1(int low, int high)
{
while (low < high)
{
if (high - low < 900)
{
InsertionSort();
break;
}
else
{
int pivot = QSortPartition(low, high);
if (pivot - low < high - pivot)
{
QuickSort1(low, pivot--);
low = pivot + 1;
}
else
{
QuickSort1(pivot++, high);
high = pivot - 1;
}
}
}
}
template <class T>
int CDA<T>::QSortPartition(int low, int high)
{
int pivot = circArray[Median(low, high) % capacity];
Swap(&circArray[(Median(low, high)) % capacity], &circArray[(high) % capacity]);
int index = low % capacity;
for (int i = low; i < high; i++)
{
if (circArray[i % capacity] <= pivot)
{
T t = circArray[i % capacity];
circArray[i % capacity] = circArray[index % capacity];
circArray[index % capacity] = t;
index++;
}
}
Swap(&circArray[index % capacity], &circArray[high % capacity]);
return index;
}
template <class T>
int CDA<T>::Median(int low, int high)
{
T left, mid, right;
left = circArray[low % capacity];
mid = circArray[((low + high) / 2) % capacity];
right = circArray[high % high];
if (left < right && left > mid)
return low % capacity;
if (left < mid && left > right)
return low % capacity;
if (right < left && right > mid)
return high % capacity;
if (right < mid && right > left)
return high % capacity;
if (mid < left && mid > right)
return ((low + high) / 2 % capacity);
if (mid < right && mid > left)
return ((low + high) / 2 % capacity);
}
template <class T>
void CDA<T>::Swap(int* x, int* y)
{
int temp = *x;
*x = *y;
*y = temp;
}
template <class T>
void CDA<T>::CountingSort(int m) ////NEED TO FIX THIS
{
int* OP = new int[size];
int* Counter = new int[m + 1];
for (int i = front; i <= rear; i++)
{
cout << "CircArray[" << i << "] is " << circArray[i] << endl;
}
for (int i = 0; i <= m; i++)
{
Counter[i] = 0;
}
for (int i = front; i < front + (size); i++)
{
Counter[circArray[i % capacity]]++;
}
for (int i = 1; i <= m; i++)
{
Counter[i] += Counter[i - 1];
}
for (int i = rear - 1; i > 0; i--)
{
OP[Counter[circArray[i]] - 1] = circArray[i];
cout << "Circular array at " << i << " is " << circArray[i] << endl;
Counter[circArray[i]] -= 1;
if (i == front % capacity)
break;
if (i == 0)
i = capacity;
}
for (int i = 0; i < size; i++)
circArray[i] = OP[i];
ordered = true;
front = 0;
}
template <class T>
int CDA<T>::Search(T e)
{
if (ordered == true) //binary search of item e
{
return BinarySearch(front, front + (size - 1), e);
}
else if (ordered == false)
{
for (int i = 0; i < size - 1; i++)
{
if (circArray[i] == e)
return i;
}
}
return -1;
}
template <class T>
int CDA<T>::BinarySearch(int left, int right, T e)
{
while (left <= right)
{
int mid = (left + right) / 2;
int value = circArray[mid % capacity];
if (value == e)
return (mid - front) % capacity;
else if (value < e)
return BinarySearch(mid + 1, right, e);
else if (value > e)
return BinarySearch(left, mid - 1, e);
}
return -1;
}
template <class T>
void CDA<T>::reSize()
{
capacity = capacity * 2;
T *nArray = new T[capacity];
for (int i = 0; i < size - 1; i++)
{
int l = (front + i) % (size-1);
nArray[i] = circArray[l];
}
//delete[]circArray;
circArray = nArray;
front = 0;
rear = (size - 1);
}
template <class T>
void CDA<T>::Shrink()
{
int tFront = front;
capacity = capacity / 2;
T* bArr = new T[capacity];
int index = 0;
while (front <= rear)
{
bArr[index] = circArray[(front + index) % capacity];
index++;
}
T* circArray = bArr;
front = 0;
rear = (size - 1);
}
template <class T>
CDA<T>& CDA<T>::operator=(const CDA<T>& a)
{
if (this != &a)
{
delete[]circArray;
size = a.size;
capacity = a.capacity;
circArray = new T[a.capacity];
front = a.front;
rear = a.size - 1;
ordered = a.ordered;
for (int i = a.front; i < a.front + (a.size); i++)
{
circArray[i % capacity] = a.circArray[i % capacity];
}
}
return *this;
}
template <class T>
int CDA<T>::Front()
{
return front;
}
template <class T>
T CDA<T>::Data(int n)
{
return circArray[n];
}
#include <iostream>
#include "CDA-1.cpp"
using namespace std;
template<class keytype, class valuetype>
class Heap
{
private:
CDA<keytype>* K;
CDA<valuetype>* V;
int size;
public:
Heap()
{
this->K = new CDA<keytype>();
this->V = new CDA<valuetype>();
size = 0;
}
Heap(keytype k[], valuetype v[], int s)
{
//allocate two different arrays for each type
//fill those arrays concurrently using insert
//sort concurrently using heapafy recursively
this->K = new CDA<keytype>(s);
this->V = new CDA<valuetype>(s);
this->size = s;
for (int i = 0; i < s; i++)
{
insert(k[i], v[i]);
}
heapify(s, K->Front());
}
void heapify(int s, int i)
{
//Errors for evans to fix: swap the n's with s.
//Fix the left and right variable logic. Hepaify smallest not small at the bottom.
//Also we need to pass V[] in a parameter so we can edit it in this.
//How to better swap V with K and not just K.
int smallest = i;
int left = 2*i +(-i+1);
int right = 2*i + (-i+2);
keytype kl = K->Data(left);
keytype kr = K->Data(right);
keytype ks = K->Data(smallest);
if (left < s && kl < ks) //FIX
smallest = left;
if (right < s && kr < ks) //FIX
smallest = right;
if (smallest != i)
{
swap(K[i], K[smallest]);
swap(V[i], V[smallest]); //FIX
heapify(s, smallest);
}
}
~Heap() {
return;
}
//items should be inserted using bottom up heap building method
void insert(keytype k, valuetype v)
{
K->AddEnd(k);
V->AddEnd(v);
heapify(size, K->Front());
}
keytype peekKey()
{
int f = K->Front();
return K->Data(f);
}
valuetype peekValue()
{
int f = V->front();
return V->Data(f);
}
keytype extractMin()
{
keytype temp = K->Data(K->Front());
K->DelFront();
V->DelFront();
heapify(size, K->Front());
return temp;
}
void printKey()
{
ActualPrintKey(K->Front());
}
void ActualPrintKey(int n)
{
keytype rt = K->Data(n);
if (rt != size)
{
cout << K->Data(rt) << " ";
ActualPrintKey((2 * n) + (-n + 1));
ActualPrintKey((2 * n) + (-n + 2));
}
}
};
/*
template <class keytype, class valuetype>
class BHeap
{
BHeap();
BHeap(keytype k[], valuetype v[], int s);
~BHeap();
keytype peekKey();
valuetype peekValue();
keytype extractMin();
//items should be inserted using repeated insertion
void insert(keytype k, valuetype v);
void merge(BHeap<keytype, valuetype>& H2);
void printKey();
};
*/
#include <iostream>
#include "Heaps.cpp"
using namespace std;
int main() {
string K[10] = { "A", "B", "C", "D", "E", "F", "G", "H", "I", "K" };
int V[10] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
Heap<string, int> T1, T2(K, V, 10);
cout << T2.peekKey() << endl;
cout << endl;
system("pause");
return 0;
}
In general "Access violation reading location", means you are trying to read virtually memory address space to a process which does not belong to your application and the operating system protective mechanism is kicking in to protect the rest of the loaded applications and resource from been accessed (read or write) by your application "memory leak vulnerability". If I was at your place I would review the code and all variables and arrays if they are properly initialized before use. Another thing which needs to be taken in consideration is the operating system and the permissions required by your application (Windows run as Administrator / GNU/Linux sudo).
Cheers

Segmentation Fault 11 in while loop dependent on std::map.count()

Within the definition of a class template method, the following lambda definition has been included:
//lambda
auto fnd_nxt_free = [&] ()
{
while(m_map.count(it->first))
{
DBG_PRINT("it->first:" << it->first)
DBG_PRINT("m_map.count(it->first):" << m_map.count(it->first))
DBG_PRINT("distance(m_map.begin(), it):" << distance(m_map.begin(),it))
if(it->first == keyEnd)
{
break;
}
++it;
}
return it;
};
The lambda is used to increment the iterator to the map, for the purpose of assignment.
For consecutive assignments to the map following construction, the intended logic of the code is to increment the iterator to the next free key position within the specified range, before insertion of the specific value.
The different values used in this particular test are (0,1,'A'), which corresponds to construction, (0,2,'B') and (0,3,'C'). Note that the range is implied as [keyBegin, keyEnd).
The segmentation fault is encountered for the third insertion inside the lambda fnd_nxt_free. Notice the debug prints highlighted inside the lambda as part of the source code. The corresponding output (for the third insertion) is as shown below:
it->first:0
m_map.count(it->first):1
distance(m_map.begin(), it):0
it->first:1
m_map.count(it->first):1
distance(m_map.begin(), it):1
it->first:1
m_map.count(it->first):1
distance(m_map.begin(), it):2
The output of m_map.count(<key>) is expected to be 0 when the distance of the iterator from m_map.begin() is 2, for the insertion (0,3,'C'). As the debug print output shows, the value of key is printed correctly in the first two cases, but does not increment after that, even though the distance of the iterator from m_map.begin() is shown to be 2.
In the case of the second insertion (0,2,'B') the same logic in the lambda works as expected, and the while() loop exits when the iterator is incremented past the first key position (0), and the only debug print that is output from the lambda is:
it->first:0
m_map.count(it->first):1
distance(m_map.begin(), it):0
Thus in the second case, the as the iterator moves past the first key position, mm_count() returns 0. However, the same logic fails in the case of the second insertion. I can assure that the rest of the processing before the lambda is hit is exactly the same in both the cases.
Can someone point to the flaw?
MWE
#define DBG_PRINT(...) (cout << __VA_ARGS__<< endl);
template<class K, class V>
class interval_map{
friend void IntervalMapTest();
private:
map<K,V> m_map;
private:
bool did_assign;
public:
interval_map(V const&);
public:
void assign(K const& keyBegin, K const& keyEnd, V const& val);
public:
V const& operator [](K const& key) const;
public:
struct comp;
public:
void display(void);
};
template<class K, class V> struct interval_map<K,V>::comp{
bool operator()(pair<K const&,V const&> p, V const& v) const{
return(p.second < v);
}
bool operator()(V const& v, pair<K const&, V const&> p) const{
return(v < p.second);
}
};
template<class K, class V> interval_map<K,V>::interval_map(V const& val){
m_map.insert(m_map.begin(), make_pair(numeric_limits<K>::lowest(), val));
}
template<class K, class V> V const& interval_map<K,V>::operator [] (K const& key) const{
return (--m_map.upper_bound(key))->second;
}
template<class K, class V> void interval_map<K,V>::assign(K const& keyBegin, K const& keyEnd, V const& val){
auto begin = m_map.find(keyBegin);
auto end = m_map.find(keyEnd);
auto p = equal_range(begin,end,val,comp());
auto it = p.first;
//lambda
auto fnd_nxt_free = [&] (){
LINE
while(
m_map.count(it->first)
){
DBG_PRINT("it->first:" << it->first)
DBG_PRINT("m_map.count(it->first):" << m_map.count(it->first))
DBG_PRINT("distance(m_map.begin(), it):" << distance(m_map.begin(), it))
if(it->first == keyEnd){
break;
}
++it;
}
return it;
};
if(it == end)
{
it = m_map.begin();
next(it,keyBegin);
fnd_nxt_free();
if(it->first < keyEnd){
m_map.insert(make_pair(it->first,val));
}
}
else{
if(p.second == end){
auto tmpKey = it->first;
do
{
if(fnd_nxt_free()->first < keyEnd)
{
if( fnd_nxt_free()->first - tmpKey < 2)
{
if(it == end){
break;
}
++it;
continue;
}
else
{
if(it->first < keyEnd){
m_map.insert(make_pair(it->first, val));
}
}
}
}while(it->first < keyEnd);
}
else{
it = p.second;
fnd_nxt_free();
if(it->first < keyEnd){
m_map.insert(make_pair(it->first,val));
}
}
}
}
template<class K, class V> void interval_map<K,V>::display(){
for(auto i : m_map){
cout << i.first;
cout << " ";
cout << i.second;
cout << endl;
}
}
void IntervalMapTest(){
interval_map<unsigned int, char> iMap('A');
iMap.assign(0,2,'B');
iMap.assign(0,3,'C');
iMap.display();
return;
}

How is it possible to randomly remove an element from vector< vector<short> >?

Below is a Sudoku initializer, I am attempting to create a function that based on User input, erases a random element from the the board. The random element can be removed from any part of the board.
class cell{
bool m_occu; //occupied is shown '.'
int m_num;
public:
cell() : m_occu(false), m_num(0) {}
void setMark(const int num){m_num = num; m_occu = true;}
bool isMarked() const { return m_occu; }
int getNum(){ return m_num;}
friend ostream& operator << (ostream& o, const cell& c){
if (!c.m_occu) return o << setw(2) << '-';
return o << setw(2) << c.m_num;
}
};
class board {
vector<vector <cell> >m_map;
bool col_row;
public:
board() {
vector<cell> a_row(9);
col_row = false;
for (int i = 0; i < 9; ++i)
{
for(int j = 0; j < 9; j++)
{
a_row[j].setMark(j+1);
}
random_shuffle(a_row.begin(), a_row.end());
m_map.push_back(a_row);
}
}
void erase(){
}
Here is the code for erase function:
void erase(std::vector your_vector){
your_vector.erase(your_vector.begin() + random(1,your_vector.size()));
}
and this the code for random number generation:
int random(int min, int max) //range(min, max)
{
bool first = true;
if ( first )
{
srand(time(NULL)); //seeding only for the first time
first = false;
}
return min + rand() % (max - min);
}

Factorial in bignum library

Ive tried to create my own implementation of a bignum library
I cant seem to get the factorial to work. If I ask it to solve 4!, it gives out 96. It multiplies 4 twice. similarly, 5! is 600, not 120. I haven't implemented division, so I cant/dont want to divide the answer by the number
//bignum project
#include <iostream>
using namespace std;
class bignum
{
public:
int number[100];
int dpos;
int operator/ (bignum);
bignum operator- (bignum);
bignum operator* (bignum);
bignum operator+ (bignum);
bignum operator= (string);
void output()
{
int begin=0;
for(int i=0; i<=99; i++)
{
if(number[i]!=0 || begin==1)
{
cout<<number[i];
begin=1;
}
}
}
};
bool num_is_zero(bignum k)
{
for(int a=0; a<=99; a++)
{
if(k.number[a]!=0)
{
return false;
}
}
return true;
}
bignum factorial(bignum a)
{
bignum j;
bignum fact;
fact="1";
while(!num_is_zero(a))
{
j="1";
fact=fact*a;
a=a-j;
}
return fact;
}
bignum bignum::operator= (string k)
{
int l;
l=k.length()-1;
for(int h=0; h<=99; h++)
{
number[h]=0;
}
for(int a=99; a>=0 && l>=0; a--)
{
number[a]=k[l]-'0';
l--;
}
}
bignum bignum::operator+ (bignum b)
{
bignum a;
int carry=0;
for(int k=0; k<=99; k++)
{
a.number[k]=0;
}
for(int i=99; i>=0; i--)
{
a.number[i]= number[i]+b.number[i]+a.number[i];
if(a.number[i]>9)
{
carry=(a.number[i]/10);
a.number[i-1]+=carry;
a.number[i]=(a.number[i]%10);
}
}
return (a);
}
bignum bignum::operator- (bignum c)
{
bignum a;
int sign=0;
for(int k=0; k<=99; k++)
{
a.number[k]=0;
}
for(int i=99; i>=0; i--)
{
if(number[i]<c.number[i])
{
number[i]+=10;
if(i!=0)
number[i-1]--;
}
a.number[i]=number[i]-c.number[i];
}
return (a);
}
bignum bignum::operator* (bignum b)
{
bignum ans;
int ans_grid[100][100],x,lines=0,carry,sum[100];
for(int a=0; a<=99; a++)
{
for(int b=0; b<=99; b++)
{
ans_grid[a][b]=0;
}
}
for(int i=99; i>=0; i--)
{
for(int j=i,x=99; j>=0; j--,x--)
{
ans_grid[lines][j]=(number[i]*b.number[x]);
}
lines++;
}
//------------------------------------------------Carry Forward and assign to ans------------------------------------------------//
for(int j=99; j>=0; j--)
{
for(int i=99; i>=0; i--)
{
if(ans_grid[j][i]>9 && i!=0)
{
carry=(ans_grid[j][i]/10);
ans_grid[j][i-1]+=carry;
ans_grid[j][i]%=10;
}
}
}
for(int col=99; col>=0; col--)
{
for(int row=99; row>=0; row--)
{
sum[col]+=ans_grid[row][col];
}
}
for(int i=99; i>=0; i--)
{
if(sum[i]>9 && i!=0)
{
carry=(sum[i]/10);
sum[i-1]+=carry;
sum[i]%=10;
}
}
for(int l=0; l<=99; l++)
ans.number[l]=sum[l];
//-------------------------------------------------------------------------------------------------------------------------------//
return (ans);
}
I think your problem is that sum is uninitialized in your operator*. I'm reluctant to give a partial answer, since I took the code and fiddled with it a bit, so here's my version which appears to work (and also prints "0" correctly):
Update: I couldn't resist making several structural improvements. I didn't touch your multiplication routine, so you should still be able to extract the bugfix even if you don't care for the rest.
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
class bignum
{
public:
int number[100];
bignum() { std::fill(number, number + 100, 0); }
bignum(const bignum & other) { std::copy(other.number, other.number + 100, number); }
bignum(const std::string &);
bignum & operator-=(const bignum &);
inline bignum operator-(const bignum & c) const { return bignum(*this) -= c; }
bignum operator*(const bignum &) const;
inline bignum & operator= (const std::string & k) { return *this = bignum(k); }
inline operator bool() const
{
for (size_t a = 0; a < 100; ++a)
if (number[a] != 0) return true;
return false;
}
};
std::ostream & operator<<(std::ostream & o, const bignum & b)
{
bool begun = false;
for (size_t i = 0; i < 100; ++i)
{
if (begun || b.number[i] != 0)
{
cout << b.number[i];
begun = true;
}
}
if (!begun) o << "0";
return o;
}
bignum::bignum(const std::string & k)
{
std::fill(number, number + 100, 0);
for(size_t h = 0; h < std::min(k.length(), 100U); ++h)
number[99 - h] = k[k.length() - 1 - h] - '0';
}
bignum & bignum::operator-=(const bignum & c)
{
for (int i = 99; i >= 0; --i)
{
if (number[i] < c.number[i])
{
number[i] += 10;
if (i != 0) --number[i-1];
}
number[i] -= c.number[i];
}
return *this;
}
bignum bignum::operator*(const bignum & b) const
{
bignum ans;
int ans_grid[100][100], lines = 0, carry, sum[100];
std::fill(sum, sum + 100, 0);
for (size_t i = 0; i < 100; ++i) std::fill(ans_grid[i], ans_grid[i] + 100, 0);
for(int i=99; i>=0; i--)
{
for(int j=i,x=99; j>=0; j--,x--)
{
ans_grid[lines][j]=(number[i]*b.number[x]);
}
lines++;
}
//------------------------------------------------Carry Forward and assign to ans------------------------------------------------//
for(int j=99; j>=0; j--)
{
for(int i=99; i>=0; i--)
{
if(ans_grid[j][i]>9 && i!=0)
{
carry=(ans_grid[j][i]/10);
ans_grid[j][i-1]+=carry;
ans_grid[j][i]%=10;
}
}
}
for(int col=99; col>=0; col--)
{
for(int row=99; row>=0; row--)
{
sum[col]+=ans_grid[row][col];
}
}
for(int i=99; i>=0; i--)
{
if(sum[i]>9 && i!=0)
{
carry=(sum[i]/10);
sum[i-1]+=carry;
sum[i]%=10;
}
}
for(int l=0; l<=99; l++)
ans.number[l]=sum[l];
//-------------------------------------------------------------------------------------------------------------------------------//
return (ans);
}
bignum factorial(bignum a)
{
bignum j; j = "1";
bignum fact; fact="1";
while(a)
{
fact = fact * a;
a = a-j;
}
return fact;
}
int main(int argc, char * argv[])
{
if (argc < 2) return 0;
bignum a;
a = std::string(argv[1]);
bignum b = factorial(a);
cout << a << std::endl << b << std::endl;
}
The string assignment is still broken for strings with more than one digit, but that wasn't your question I suppose...