Write in SWRL a mathematical expression to calculate probability distributions - semantic-web

I am new on Semantic Web Rules Language and I am writing some rules in order to calculate the probability of - discrete and continuous - distributions.
I know that with SWRL I can do subtractions, addition, multiplication and divisions.
But what about exponentiation, summation, calculation of mathematical functions? Is there a way to do this in SWRL?
Just an example to place my question :
You know, for example, for Triangular distribution, we need basic mathematical calculus (subtractions and divisions), but for Beta Distribution we need exponentiation and calculus of the beta function..
Is there a way to do this in SWRL?
Thanks

The standard describes what math functions should be available, and these include exponentiation:
8.2. Math Built-Ins
…
swrlb:pow
Satisfied iff the first argument is equal to the result of the second argument raised to the third argument power.
There's no built in for the Beta function, though. You'd need to look into the reasoner that you're using and see whether you can implement additional mathematical builtins.
summation, calculation of mathematical functions
For summations, you may find the aggregate functions in SPARQL useful, but only if the terms you need to sum are available individually. You won't easily be able to express arbitrary sums like ∑i=1…n i2. You might find support for extension functions in SPARQL implementations, too.

Related

Quadratic (programming) Optimization : Multiply by scalar

I have two - likely simple - questions that are bothering me, both related to quadratic programming:
1). There are two "standard" forms of the objective function I have found, differing by multiplication of negative 1.
In the R package quadprog, the objective function to be minimized is given as −dTb+12bTDb and in Matlab the objective is given as dTb+12bTDb. How can these be the same? It seems that one has been multiplied through by a negative 1 (which as I understand it would change from a min problem to a max problem.
2). Related to the first question, in the case of using quadprog for minimizing least squares, in order to get the objective function to match the standard form, it is necessary to multiply the objective by a positive 2. Does multiplication by a positive number not change the solution?
EDIT: I had the wrong sign for the Matlab objective function.
Function f(b)=dTb is a linear function thus it is both convex and concave. From optimization standpoint it means you can maximize or minimize it. Nevertheless minimizer of −dTb+12bTDb will be different from dTb+12bTDb, because there is additional quadratic term. Matlab implementation will find the one with plus sign. So if you are using different optimization software you will need to change d→−d to get the same result.
The function −dTb+12bTDb where D is symmetric and convex and thus has unique minimum. In general that is called standard quadratic programming form, but that doesn't really matter. The other function dTb−12bTDb is concave function which has unique maximum. It is easy to show that for, say, bounded function f(x) from above the following holds:
argmaxxf=argminx−f
Using the identity above value b∗1 where −dTb+12bTDb achieves minimum is the same as the value b∗2 which achieves maximum at dTb−12bTDb, that is b∗1=b∗2.
Programmatically it doesn't matter if you are minimizing −dTb+12bTDb or maximizing the other one. These are implementation-dependent details.
No it does not. ∀α>0 if x∗=argmaxxf(x), then x∗=argmaxxαf(x). This can be showed by contradiction.

Difference between Aggregate Precision-Recall curves and Precision-Recall curves

In the context of Information Retrieval, some papers like this one talk about Aggregate Precision-Recall curves (cf figure 3). What is the difference between these curves and Precision-Recall curves ? The authors of this paper seem to make a difference between the two, because they describe the curves shown in figure 4 as Precision-Recall curves and not Aggregate Precision-Recall curves (cf section 4.5)
Aggregate vs. Non-aggregate P&R Curves
In general, there is a difference between precision-recall curves and aggregate precision recall curves. You typically create a precision-recall curve for a single query (query=entity in this paper) given a system -- by slicing up the ranking and calculating both precision and recall at every point, you can plot this curve.
When you have a few hundred queries (entities), as is typical in papers, you can't show a few hundred graphs (nor could humans interpret them...), so what you do is average the curves somehow. They are referring to this as "aggregate" precision recall curves in this work. It is a little unfortunate they do not specify their aggregation method, but it would be reasonable to assume they use the mean, which is quite typical for these curves. I like to mention the software package I used to do it in situations like this, since it's difficult to know exactly how to group recalls across queries.
On your more specific question (about Figures 3 & 4):
They're not actually making a difference between Figure 3 and Figure 4 in this paper; they're just less precise in their references to Figure 4. At the very end of section 4.1 (Dataset and Evaluation Metrics) they mention that they
report both the aggregate curves precision/recall curves and Precision#N (P#N) in our experiments
This is a typical convention of papers. Unless specifically stated otherwise, you can assume that graphs and measures refer to those described in a setup section like this one.
There are multiple relations considered. For each one of them, we order the instances discovered from the test set with respect to the confidence score (which is encoded in the output of the network), and report the precision and recall values. Once this is done for all the relation types, the precision and recall curves are averaged, so that in final we only have ONE list of precision recall values parameterized by the number of retrievals. How exactly the average is computed is not clearly stated in the paper. The plot of this list is what is referred to as the aggregate precision-recall curve. Thanks to #John Foley!

Implementing a 2D recursive spatial filter using Scipy

Minimally, I would like to know how to achieve what is stated in the title. Specifically, signal.lfilter seems like the only implementation of a difference equation filter in scipy, but it is 1D, as shown in the docs. I would like to know how to implement a 2D version as described by this difference equation. If that's as simple as "bro, use this function," please let me know, pardon my naiveté, and feel free to disregard the rest of the post.
I am new to DSP and acknowledging there might be a different approach to answering my question so I will explain the broader goal and give context for the question in the hopes someone knows how do want I want with Scipy, or perhaps a better way than what I explicitly asked for.
To get straight into it, broadly speaking I am using vectorized computation methods (Numpy/Scipy) to implement a Monte Carlo simulation to improve upon a naive for loop. I have successfully abstracted most of my operations to array computation / linear algebra, but a few specific ones (recursive computations) have eluded my intuition and I continually end up in the digital signal processing world when I go looking for how this type of thing has been done by others (that or machine learning but those "frameworks" are much opinionated). The reason most of my google searches end up on scipy.signal or scipy.ndimage library references is clear to me at this point, and subsequent to accepting the "signal" representation of my data, I have spent a considerable amount of time (about as much as reasonable for a field that is not my own) ramping up the learning curve to try and figure out what I need from these libraries.
My simulation entails updating a vector of data representing the state of a system each period for n periods, and then repeating that whole process a "Monte Carlo" amount of times. The updates in each of n periods are inherently recursive as the next depends on the state of the prior. It can be characterized as a difference equation as linked above. Additionally this vector is theoretically indexed on an grid of points with uneven stepsize. Here is an example vector y and its theoretical grid t:
y = np.r_[0.0024, 0.004, 0.0058, 0.0083, 0.0099, 0.0133, 0.0164]
t = np.r_[0.25, 0.5, 1, 2, 5, 10, 20]
I need to iteratively perform numerous operations to y for each of n "updates." Specifically, I am computing the curvature along the curve y(t) using finite difference approximations and using the result at each point to adjust the corresponding y(t) prior to the next update. In a loop this amounts to inplace variable reassignment with the desired update in each iteration.
y += some_function(y)
Not only does this seem inefficient, but vectorizing things seems intuitive given y is a vector to begin with. Furthermore I am interested in preserving each "updated" y(t) along the n updates, which would require a data structure of dimensions len(y) x n. At this point, why not perform the updates inplace in the array? This is wherein lies the question. Many of the update operations I have succesfully vectorized the "Numpy way" (such as adding random variates to each point), but some appear overly complex in the array world.
Specifically, as mentioned above the one involving computing curvature at each element using its neighbouring two elements, and then imediately using that result to update the next row of the array before performing its own curvature "update." I was able to implement a non-recursive version (each row fails to consider its "updated self" from the prior row) of the curvature operation using ndimage generic_filter. Given the uneven grid, I have unique coefficients (kernel weights) for each triplet in the kernel footprint (instead of always using [1,-2,1] for y'' if I had a uniform grid). This last part has already forced me to use a spatial filter from ndimage rather than a 1d convolution. I'll point out, something conceptually similar was discussed in this math.exchange post, and it seems to me only the third response saliently addressed the difference between mathematical notion of "convolution" which should be associative from general spatial filtering kernels that would require two sequential filtering operations or a cleverly merged kernel.
In any case this does not seem to actually address my concern as it is not about 2D recursion filtering but rather having a backwards looking kernel footprint. Additionally, I think I've concluded it is not applicable in that this only allows for "recursion" (backward looking kernel footprints in the spatial filtering world) in a manner directly proportional to the size of the recursion. Meaning if I wanted to filter each of n rows incorporating calculations on all prior rows, it would require a convolution kernel far too big (for my n anyways). If I'm understanding all this correctly, a recursive linear filter is algorithmically more efficient in that it returns (for use in computation) the result of itself applied over the previous n samples (up to a level where the stability of the algorithm is affected) using another companion vector (z). In my case, I would only need to look back one step at output signal y[n-1] to compute y[n] from curvature at x[n] as the rest works itself out like a cumsum. signal.lfilter works for this, but I can't used that to compute curvature, as that requires a kernel footprint that can "see" at least its left and right neighbors (pixels), which is how I ended up using generic_filter.
It seems to me I should be able to do both simultaneously with one filter namely spatial and recursive filtering; or somehow I've missed the maths of how this could be mathematically simplified/combined (convolution of multiples kernels?).
It seems like this should be a common problem, but perhaps it is rarely relevant to do both at once in signal processing and image filtering. Perhaps this is why you don't use signals libraries solely to implement a fast monte carlo simulation; though it seems less esoteric than using a tensor math library to implement a recursive neural network scan ... which I'm attempting to do right now.
EDIT: For those familiar with the theoretical side of DSP, I know that what I am describing, the process of designing a recursive filters with arbitrary impulse responses, is achieved by employing a mathematical technique called the z-transform which I understand is generally used for two things:
converting between the recursion coefficients and the frequency response
combining cascaded and parallel stages into a single filter
Both are exactly what I am trying to accomplish.
Also, reworded title away from FIR / IIR because those imply specific definitions of "recursion" and may be confusing / misnomer.

Polynomials with variables as exponent

I'm using
R=QQ['x'];
to declare x as variable such that I can calculate with polynomials in x. What I need is another variable, for example t, to represent an integer which can also be used as exponent. For example I want to consider the polynomial (t+1)x^t. Is that somehow possible in SageMath?
EDIT: I want to explain a little bit the reason why I'm looking for such a feature. I've got a couple of really complex rational functions in a few variables and want SageMath to help me to show that they are identical. They are written down in a different way and if you would do it with pen and paper you would need hours and have a huge change of making mistakes. Actually it are not only a few rational functions but infinitely many. But using variables in the coefficients you can cover infinitely many with only one rational function. A simple example is the polynomial 1+x+x^2+...+x^t. For every non-negative integer you get a different polynomial. But you can write (x^(t+1)-1)/(x-1) as rational function instead. With taking t as a variable you cover infinitely many cases with just one rational function.
Is there a way to do such stuff in SageMath?
To create the polynomial x^t as an element of a polynomial ring, Sage needs to know what integer t is equal to. If polynomials of undetermined degree were introduced, most of the Sage methods for polynomials would not work for them: no way to get the list of coefficients with coefficients(), or to find the factors, or the GCD of two polynomials, etc.
However, you can manipulate and simplify polynomials and rational functions just like any other symbolic expressions. For example:
x,t,k = var('x,t,k')
sum(x^k, k, 1, t)
returns (x^(t + 1) - x)/(x - 1).
The relevant articles are Symbolic Computation and Symbolic Expressions.

Multiscale morphological dilation and erosion

Can anyone please specify what is meant by multiscale morphological filtering ? I understand the basic concepts of dilation and erosion. But in multiscale filtering, a scaled structuring function is being used. What does the term scaled mean ?
Please find more relevant information here : Please check link. I want to apply this structuring element in matlab coding but cannot do so. Please can anyone help me ?
Here the multiscale operator is described as:
F(x,s1,s2) = (f-s1)+s2
where f(x) is the original function and s1(x) is the structure function. Apparently, erosion and
dilation with different scales can filter positive and negative noises more perfectly.This operation satisfies
the four quantification principles of morphological filter. (from paper)
This operator is known in the Morphology community as an Alternating Sequential Filter, which basically performs filtering using a alternating series of dilations and erosions or openings and closings of increasing radii on the same image. This series of radii for the given structuring function can be decided based on the structure of the object/detail to be extracted or filtered. One can note that there are two different structuring elements s1 and s2 used to decide different scales for the erosions and dilations. This Matlab chain discusses on how to test it.