Objective-C method parameter type-safety - objective-c

If I have methods like:
- (BOOL)isValidRow:(NSDictionary*)contentVersionRow
do we really have to continually check like this at the beginning of the method
if(![contentVersionRow isKindOfClass:[NSDictionary class]]) {
// Handle unusual situation - probably return NO in this case
}
to really implement proper type-safety inside Objective-C methods? Because in theory the parameter is not guaranteed to point to an NSDictionary object, is this correct?
EDIT: So answers so far seem to indicate we should not check for this, but then what is the difference between checking for this and checking for nil parameter, which I assume we should do? Or should we not check for nil either, if it's not normally expected? Both cases cover the situation of a misbehaving caller.

Just like in C you are dealing with pointers in Objective-C. So saying NSDictionary * simply means "here's a pointer to a memory address that contains an instance of NSDictionary".
Example:
#import <Foundation/Foundation.h>
#interface Test : NSObject
- (void)useDictionary:(NSDictionary *)dictionary;
#end
#implementation Test
- (void)useDictionary:(NSDictionary *)dictionary
{
NSLog(#"Keys: %#", [dictionary allKeys]);
}
#end
int main(int argc, char *argv[]) {
#autoreleasepool {
Test *test = [[Test alloc] init];
// 1: This works fine
[test useDictionary:#{#"key": #"value"}];
// 2: This will cause a compiler warning (or error depending on the options passed to the compiler)
[test useDictionary:#"not a dictionary"];
// 3: This will compile without any warnings
[test useDictionary:(NSDictionary *)#"not a dictionary"];
}
}
The 2nd and 3rd examples will cause the program to crash at runtime. So if you want to pass incorrect things to methods, you can. Usually Xcode will warn you if you have a type-mismatch.
Update about nil-checking: If it's an API-misuse to pass nil to your method, then throw an exception. That's what exceptions are for in Objective-C: to catch programming mistakes, not to handle expected runtime issues (like an unreachable network). If your method can just silently fail if nil is passed in or handle it in a sensible way, then do that instead. For example if you have a method addValue:(NSNumber *)number that adds the given value to a sum then it wouldn't be a big deal if someone called it with nil: Just don't add anything :)

Yes, but you shouldn’t.
Obj-C is a dynamic language, so it is up to each object to determine if it responds to a certain method. It is bad style to check the class of an object.
Instead, if you want to check that an object supports a selector you should use -respondsToSelector:, but only if you handle objects not responding to that selector.

Related

Mac OS X, Objective-C crash with NSMutableArray

Environment: Mac OS 10.8.5, XCode 5.1.1
Problem: Crash in obj_msgsend on addObject message to a NSMutableArray
Disclaimer: I'm new to Objective-C, so this could an obvious mistake. But it's mysterious.
Details:
I've been able to prune the problem down to a small test case (thankfully), though the exact manifestation of the problem is different from the full application.
Here's the #interface:
#interface ObjCQueue : NSObject
+ (void) push: (NSString *)calEvent;
+ (NSString *) pop;
#end
Here's the Objective-C class implementation.
#import <Foundation/Foundation.h>
#include "ObjcQueue.h"
NSMutableArray *qArray;
#implementation ObjCQueue
{
}
+ (void) init
{
qArray = [[NSMutableArray alloc] init];
// NSLog(#"(init)qArray class is: %#\n", NSStringFromClass([qArray class]));
}
+ (void) push:(NSString *)calEvent
{
[qArray addObject:calEvent];
}
+ (NSString *) pop
{
// This will return nil if there's no first object
NSString *retEvent = [qArray objectAtIndex:0];
// Don't delete the front of the queue if nothing is there
if (retEvent != nil)
[qArray removeObjectAtIndex:0];
return retEvent;
}
#end
and main.m does this:
int main(int argc, const char * argv[])
{
#autoreleasepool {
[ObjCQueue init];
[ObjCQueue push:#"Pushed thing"];
NSLog(#"Popped: %#\n", [ObjCQueue pop]);
}
return 0;
}
For the moment, let's ignore the possibility that how I'm doing this is totally wrong (we'll get back to that).
If I run this code as-is, I get a crash in objc_msgSend called by the addObject message sent from [ObjCQueue push:]
The mystery part is, if I uncomment the NSLog call in [ObjCQueue init] everything runs just fine.
In the larger application, I see a different issue. The failure also occurred in the push method, except the run-time error I got said that addObject was an invalid selector. When I check the type of qArray in that case, it has a type of NSDictionary (that's from memory, it wasn't spelled exactly that way) instead of NSMutableArray. Also, in the larger application, adding the NSLog call in the init method makes everything run smoothly.
In this smaller example, the type of qArray always appears to be NSMutableArray.
In other answers to similar questions, the implication is that the object corresponding to qArray is getting overwritten, and/or released prematurely. I don't see how that could happen here, since it's global, and ObjCQueue only has class methods and no instance of it is created. [ObjCQueue init] is only called once.
One other bit of data: In this smaller case, qArray gets displayed differently depending where (in the debugger) it's displayed.
In init, in the case where it crashes, immediately after qArray gets its value, the debugger shows:
Printing description of qArray:
<__NSArrayM 0x10010a680>(
)
But in push, just before the addObject method is called, the debugger shows:
Printing description of qArray:
(NSMutableArray *) qArray = 0x000000010010a680
The value is the same, but the type is kinda sorta different (maybe). In the case with no crash, the display is identical in both cases (they're both the same as the first display)
This may not be the best way (or it may be a blatantly wrong way) to initialize qArray, and I can accept that. But why would the behavior change with the addition of the NSLog call?
Any help/insights will be appreciated.
-Eric
P.S. Here's the XCode project: Bug Test
The problem is because ARC is releasing qArray before you called push so you're calling on an object that is already released. A good solution to this problem would be to either change your class to an actual instance, or create a singleton so that ARC knows to retain the array rather than just releasing it right after you init.

Macro that logs the actual types of method arguments

Let's say this is my init method
- (id)initWithClient:(id <Client>)client
andDataStorage:(DataStorage *)storage
{
if (self = [super init])
{
self.client = client;
self.storage = storage;
}
return self;
}
Then I want to write a macro that somehow logs the parameters passed to a method, by wrapping the parameter with a defined macro. Is this possible in any way?
The problem is at runtime it's not possible to find out the type of a parameter passed to a method. So I'm trying to find a hack around it, and do it at compile time.
// somehow achieve this, and log the value inside the marco
#define INJECT(x) NSLog(#"%#", x)
- (id)initWithClient:(INJECT(id <Client>))client
andDataStorage:(INJECT(DataStorage *))storage
{
}
expected log in console:
id <Client>
DataStorage *
At the risk of running into what appear to be crossed wires in the comments: you can get the parameter types passed to a method at runtime.
E.g.
NSMethodSignature *signature =
[class methodSignatureForSelector:#selector(someSelector:)];
for(int argument = 2; argument < signature.numberOfArguments; argument++)
{
const char *argumentType = [signature getArgumentTypeAtIndex:argument];
// this is where it gets a bit messy...
if(!strcmp(argumentType, #encode(int))) NSLog(#"an integer");
if(!strcmp(argumentType, #encode(float))) NSLog(#"a float");
// ... etc, etc, etc ...
}
For any passed objects, use [object class] since all objects look the same at the runtime level — think of e.g. NSArray -addObject:; the runtime knows an object type will be passed in but it could be any object type.
See Apple's documentation on Type Encodings for information on what's going on there with those #encodes.
Whilst not an answer to the question as such. I would not recommend doing what you are asking about. I've seen far to much code where people have logged every single method call and argument (horribly over-complicated Java Enterprise stuff). The result has always been obscenely large logs that tell you next to nothing because of the amount of work it takes to find what you are after.
My recommendation would be that logging is important, but you should do targeted logging that clearing shows the state of relevant data at specific points which are important to understanding the flow.
Like others, I'm not sure what you are really after, or whether it is a good idea/design etc. But I wonder whether you are approaching the problem the wrong way. So let's take a look and maybe it will help you. From what I see you:
Want to find some way of obtaining the declared types of method parameters, in the form of strings, at runtime.
You are trying to tackle this by adding macros to the source. This tells me that you are not trying to do this for methods in a binary library that you are dynamically loading, but to methods in source you are compiling and are prepared to modify to achieve your goal.
Looked at that way, what is the problem? If you are prepared to add macros to your source why not simply add data declarations that contain the information you want - a mapping from a selector to an order list of parameter types as strings.
Is the issue that you want to extract the information in some automated way and were intending adding your macros by some automated process?
You can arrange for an Xcode project to run a source file through some other program by changing the file extension. Apple provide examples of using this to pre-process strings files - the files are fed through a Ruby script which produces a strings file which Xcode then handles as usual. Will that address your needs? Could you write a script/application (doesn't need to be in Ruby) which could add the information you need "on the fly" - take source in, produce modified source out which Xcode then compiles as usual? Note that the Clang compiler itself is designed to be called as a library so you can even use it to help you parse your source to extract the information you are after.
If none of those approaches suit consider that the debugger knows the correct types at runtime, and it gets those from the symbol information generated for it. There are library functions provided to help reader debugger information, so you should be able to write code which uses the same information the debugger does.
Hope those ideas help you, though I'm still not clear what you are trying or whether it makes sense!
due to objC being dynamically typed, all classes have the type id. The information about the declared types is erased. They are merely hints for the developer and to enable the compiler to do some type checking (again purely for the dev's benefit)
So while #encode works for 'primates' and structs and stuff, for classes all is equal... as there are not really object types for runtime
'Solution': Store the class names of method argumentsin a map manually and then COMBINE that info with #encode;s info to log the stuff.
working sample:
#import <Foundation/Foundation.h>
#import <objc/runtime.h>
NSDictionary *DDParamsMap(void);
NSDictionary *DDParamsMap() {
static NSDictionary *dict = nil;
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
//TODO
//add all methods that are have objc classes passed
//add the classes or NSNull
dict = #{#"Test_initWithArray:data:number:": #[NSArray.class, NSData.class, NSNull.null]};
});
return dict;
}
void DDLogParamsOf(Class class, SEL sel);
void DDLogParamsOf(Class class, SEL sel) {
//
//try internal lookup first (so we get class names
//
NSString *className = #(class_getName(class));
NSString *methodName = NSStringFromSelector(sel);
NSString *key = [NSString stringWithFormat:#"%#_%#", className, methodName];
NSArray *types = DDParamsMap()[key];
//
// loop
//
NSMethodSignature *signature = [class instanceMethodSignatureForSelector:sel];
if(!signature) {
signature = [class methodSignatureForSelector:sel];
}
//if the array doesnt have the right number of values, screw it!
if(types.count != signature.numberOfArguments - 2) {
types = nil;
}
for(int argument = 2; argument < signature.numberOfArguments; argument++) {
id type = types[argument - 2];
if(type && ![type isKindOfClass:[NSNull class]]) {
NSLog(#"class is %#", type);
}
else {
const char *argumentType = [signature getArgumentTypeAtIndex:argument];
// this is where it gets a bit messy...
if(!strcmp(argumentType, #encode(int))) NSLog(#"an integer");
if(!strcmp(argumentType, #encode(float))) NSLog(#"a float");
if(!strcmp(argumentType, #encode(id))) NSLog(#"it is a class");
// ... etc, etc, etc ...
}
}
}
#define LogParams() DDLogParamsOf(self.class, _cmd);
#interface Test : NSObject
+ (void)testMethofWithFloat:(float)f;
- (id)initWithArray:(NSArray*)a
data:(NSData*)d
number:(int)i;
#end
#implementation Test
+ (void)testMethofWithFloat:(float)f {
LogParams();
}
- (id)initWithArray:(NSArray*)a
data:(NSData*)d
number:(int)i
{
LogParams();
return nil;
}
#end
int main(int argc, char *argv[]) {
#autoreleasepool {
[Test testMethofWithFloat:3.0f];
Test *t = [[Test alloc] initWithArray:#[] data:[NSMutableData data] number:1];
t = nil;
}
}

Using objc_msgSendSuper to invoke a class method

I was going through and replacing #synthesized(self) locks w/ this method
void _ThreadsafeInit(Class theClassToInit, void *volatile *theVariableItLivesIn, void(^InitBlock)(void))
{
//this is what super does :X
struct objc_super mySuper = {
.receiver = (id)theClassToInit,
.super_class = class_getSuperclass(theClassToInit)
};
id (*objc_superAllocTyped)(struct objc_super *, SEL, NSZone *) = (void *)&objc_msgSendSuper;
// id (*objc_superAllocTyped)(id objc_super, SEL, NSZone *) = (void *)&objc_msgSend;
do {
id temp = [(*objc_superAllocTyped)(&mySuper /*theClassToInit*/, #selector(allocWithZone:), NULL) init];//get superclass in case alloc is blocked in this class;
if(OSAtomicCompareAndSwapPtrBarrier(0x0, temp, theVariableItLivesIn)) { //atomic operation forces synchronization
if( InitBlock != NULL ) {
InitBlock(); //only the thread that succesfully set sharedInstance pointer gets here
}
break;
}
else
{
[temp release]; //any thread that fails to set sharedInstance needs to clean up after itself
}
} while (*theVariableItLivesIn == NULL);
}
which while a bit more verbose exhibits significantly better performance in non-contested cases
along with this little macro (excuse poor formatting, it's very simple). To allow the block to be declared after the initial nil check, looks to help LLVM keep the "already initialized" path extremely fast. That's the only one I care about.
#define ThreadsafeFastInit(theClassToInit, theVariableToStoreItIn, aVoidBlockToRunAfterInit) if( theVariableToStoreItIn == nil) { _ThreadsafeInitWithBlock(theClassToInit, (void *)&theVariableToStoreItIn, aVoidBlockToRunAfterInit); }
So initially implemented it using the commented out sections for objc_superAllocTyped (actually first using [theClassToInit allocWithZone:NULL], which was definitely the best approach :) ), which worked great until I realized that most of the singletons in the project had overridden allocWithZone to return the singleton method... infinite loop. So I figured using objc_msgSendSuper should sort it out quickly, but I get this error.
[51431:17c03] +[DataUtils allocWithZone:]: unrecognized selector sent to class 0x4f9584
The error doesn't seem to be related to the actual problem, as...
(lldb) po 0x4f9584
$1 = 5215620 DataUtils
(lldb) print (BOOL)[$1 respondsToSelector:#selector(allocWithZone:)]
(BOOL) $2 = YES
So I'm definitely missing something... I compared to assembly generated by a [super allocWithZone:NULL] method in an empty class... almost identical except for the functions called have different names (maybe just using different symbols, no idea, can't read it that well).
Any ideas? I can use class_getClassMethod on the superclass and call the IMP directly, but I'm trying to be reasonable in my abuse of the runtime :)
Alright, this wasn't actually that tricky once I recalled that the meta class contains all of the method information for a Class instance obtained via -[self class] or +[self] -> thanks http://www.cocoawithlove.com/2010/01/what-is-meta-class-in-objective-c.html
This error occurred because I was asking the runtime to look up the method in NSObject's set of instance methods, which obviously doesn't contain allocWithZone: . The mistake in the error log presumably originated because the receiver was a metaclass instance, and Apple has their interns implement error logs.
so while with a normal instance method call via objc_msgSendSuper, you would pass a metaclass instance as objc_super.super_class, to invoke a class method, the metaclass itself is needed (everything is one level up).
Example, and a diagram that helped me understand this - (http://www.sealiesoftware.com/blog/archive/2009/04/14/objc_explain_Classes_and_metaclasses.html)
struct objc_super mySuper;
mySuper.receiver = theClassToInit; //this is our receiver, no doubt about it
//either grab the super class and get its metaclass
mySuper.super_class = object_getClass( class_getSuperclass( theClassToInit ) );
//or grab the metaclass, and get its super class, this is the exact same object
mySuper.super_class = class_getSuperclass( object_getClass( theClassToInit ) );
Then the message can be resolved correctly. Makes perfect sense now that I started paying attention :P
Anyways, now that I found my mistake I feel like I've leveled up my Objc runtime understanding. I was also able to fix an architectural mistake made two years ago by someone I never met without having to modifying and re-test dozens of classes across 3 projects and 2 static libraries (God I love Objective-C). Replacing the #synchronized construct with a simple function call also halved the compiled code size of those methods. As a bonus, all our singleton accessors are now (more) threadsafe, because the performance cost for doing so is now negligible. Methods which naively re-fetched the singleton object multiple times (or in loops) have seen a huge speedup now that they don't have to acquire and release a mutex multiple times per invocation. All in all I'm very happy it all worked as I'd hoped.
I made a "normal" Objective-C method for this on a category of NSObject, which will work for both instance and Class objects to allow you to invoke a superclass's implementation of a message externally. Warning: This is only for fun, or unit tests, or swizzled methods, or maybe a really cool game.
#implementation NSObject (Convenience)
-(id)performSelector:(SEL)selector asClass:(Class)class
{
struct objc_super mySuper = {
.receiver = self,
.super_class = class_isMetaClass(object_getClass(self)) //check if we are an instance or Class
? object_getClass(class) //if we are a Class, we need to send our metaclass (our Class's Class)
: class //if we are an instance, we need to send our Class (which we already have)
};
id (*objc_superAllocTyped)(struct objc_super *, SEL) = (void *)&objc_msgSendSuper; //cast our pointer so the compiler can sort out the ABI
return (*objc_superAllocTyped)(&mySuper, selector);
}
so
[self performSelector:#selector(dealloc) asClass:[self superclass]];
would be equivalent to
[super dealloc];
Carry on runtime explorers! Don't let the naysayers drag you into their land of handwaving and black magik boxes, it's hard to make uncompromisingly awesome programs there*.
*Please enjoy the Objective-C runtime responsibly. Consult with your QA team for any bugs lasting more than four hours.

Polymorphic methods in Objective C

In Java you can put in multiple constructors to a class that are called depending on the types and/or number of parameters that are used when an instance is constructed.
I assume that there is the equivalent in Objective C.
Can I have a polymorphic method?
I would like to build a method that acts slightly differently according to whether a string is passed or a double?
Does that sound bonkers or is it easy?
You're thinking of overloaded methods. Due to the way dynamic dispatch is implemented in Objective-C, it isn't currently possible to pass two unrelated types as arguments to the same (or same-named) method and have it understand.
In Objective-C, there are two related but distinct approaches to handling multiple kinds of input. Let's use your example of a string or a double as possible inputs. In Java, you might have:
void applyWidget(String s);
void applyWidget(double d);
And that's great, but not Objective-C. In Objective-C, you instead would use two different method names:
- (void)applyWidgetWithName: (NSString *)name;
- (void)applyWidgetWithValue: (double)value;
The same logic is in each method as in the Java version, but the distinct names let the compiler treat them as distinct methods (which they are, even in Java.) The code also becomes self-documenting: by reading it, you get an idea of what's happening even without comments. Alternatively, if you simply must have one method name, you change the parameter type to id and accept any object:
- (void)applyWidget: (id)widget;
Then pass either an NSString or an NSNumber wrapping your double. Then, in the implementation of the method, use Objective-C's introspection methods to determine how to proceed:
if ([widget isKindOfClass: [NSString class]]) {
...
} else if ([widget isKindOfClass: [NSNumber class]]) {
double d = [widget doubleValue];
...
}
This approach essentially tells callers "send anything--I'll handle it appropriately." It can be difficult to determine the behaviour of such a method without extensive documentation.
Absolutely easy:
- (id)initWithSomeObject:(id)object
{
if ([object isKindOfClass:[ClassOne class]) {
// do something
} else if ([object isKindOfClass:[ClassTwo class]) {
// do something else
} // etc.
return self;
}
yes, but objc does not have proper overloading.
so you see things like initWithDouble:, initWithBool: and so on. that's part of the reason it's a bit 'wordy' for some people's taste.
to use your example:
#interface MONClass
- (id)initWithString:(NSString *)pString;
- (id)initWithDouble:(double)pDouble;
...
but the following is an error:
- (id)initWith:(NSString *)pString;
- (id)initWith:(double)pDouble;
because the selector is the same -- the parameter/return types are omitted from the selector.
Basically Objective C does't have proper method overloading. It will support overriding only.
Suppose if you write functions like in same class,
(void) showMethod;
(void) showMethod:(int) aNumber;
This will support in Objective C.
Suppose if you write functions like,
(void) showMethod:(NSString*) aString;
(void) showMethod:(int) aNumber;
In this way the compiler gives Error because there conflicting parameter types in implementation of showMethod.

Objective-C & KeyValueCoding: How to avoid an exception with valueForKeyPath:?

I've got an object of type id and would like to know if it contains a value for a given keyPath:
[myObject valueForKeyPath:myKeyPath];
Now, I wrap it into a #try{ } #catch{} block to avoid exceptions when the given keypath isn't found. Is there a nicer way to do this? Check if the given keypath exists without handling exceptions?
Thanks a lot,
Stefan
You could try this:
if ([myObject respondsToSelector:NSSelectorFromString(myKeyPath)])
{
}
However, that may not correspond to the getter you have, especially if it is a boolean value. If this doesn't work for you, let me know and I'll write you up something using reflection.
For NSManagedObjects, an easy solution is to look at the object's entity description and see if there's an attribute with that key name. If there is, you can also take it to the next step and see what type of an attribute the value is.
Here's a simple method that given any NSManagedObject and any NSString as a key, will always return an NSString:
- (NSString *)valueOfItem:(NSManagedObject *)item asStringForKey:(NSString *)key {
NSEntityDescription *entity = [item entity];
NSDictionary *attributesByName = [entity attributesByName];
NSAttributeDescription *attribute = attributesByName[key];
if (!attribute) {
return #"---No Such Attribute Key---";
}
else if ([attribute attributeType] == NSUndefinedAttributeType) {
return #"---Undefined Attribute Type---";
}
else if ([attribute attributeType] == NSStringAttributeType) {
// return NSStrings as they are
return [item valueForKey:key];
}
else if ([attribute attributeType] < NSDateAttributeType) {
// this will be all of the NSNumber types
// return them as strings
return [[item valueForKey:key] stringValue];
}
// add more "else if" cases as desired for other types
else {
return #"---Unacceptable Attribute Type---";
}
}
If the key is invalid or the value can't be made into a string, the method returns an NSString error message (change those blocks to do whatever you want for those cases).
All of the NSNumber attribute types are returned as their stringValue representations. To handle other attribute types (e.g.: dates), simply add additional "else if" blocks. (see NSAttributeDescription Class Reference for more information).
If the object is a custom class of yours, you could override valueForUndefinedKey: on your object, to define what is returned when a keypath doesn't exist.
It should be possible to graft this behavior onto arbitrary classes reasonably simply. I present with confidence, but without warranty, the following code which you should be able to use to add a non-exception-throwing implementation of valueForUndefinedKey: to any class, with one, centralized line of code per class at app startup time. If you wanted to save even more code, you could make all the classes you wanted to have this behavior inherit from a common subclass of NSManagedObject and then apply this to that common class and all your subclasses would inherit the behavior. More details after, but here's the code:
Header (NSObject+ValueForUndefinedKeyAdding.h):
#interface NSObject (ValueForUndefinedKeyAdding)
+ (void)addCustomValueForUndefinedKeyImplementation: (IMP)handler;
#end
Implementation (NSObject+ValueForUndefinedKeyAdding.m):
#import "NSObject+ValueForUndefinedKeyAdding.h"
#import <objc/runtime.h>
#import <objc/message.h>
#implementation NSObject (ValueForUndefinedKeyAdding)
+ (void)addCustomValueForUndefinedKeyImplementation: (IMP)handler
{
Class clazz = self;
if (clazz == nil)
return;
if (clazz == [NSObject class] || clazz == [NSManagedObject class])
{
NSLog(#"Don't try to do this to %#; Really.", NSStringFromClass(clazz));
return;
}
SEL vfuk = #selector(valueForUndefinedKey:);
#synchronized([NSObject class])
{
Method nsoMethod = class_getInstanceMethod([NSObject class], vfuk);
Method nsmoMethod = class_getInstanceMethod([NSManagedObject class], vfuk);
Method origMethod = class_getInstanceMethod(clazz, vfuk);
if (origMethod != nsoMethod && origMethod != nsmoMethod)
{
NSLog(#"%# already has a custom %# implementation. Replacing that would likely break stuff.",
NSStringFromClass(clazz), NSStringFromSelector(vfuk));
return;
}
if(!class_addMethod(clazz, vfuk, handler, method_getTypeEncoding(nsoMethod)))
{
NSLog(#"Could not add valueForUndefinedKey: method to class: %#", NSStringFromClass(clazz));
}
}
}
#end
Then, in your AppDelegate class (or really anywhere, but it probably makes sense to put it somewhere central, so you know where to find it when you want to add or remove classes from the list) put this code which adds this functionality to classes of your choosing at startup time:
#import "MyAppDelegate.h"
#import "NSObject+ValueForUndefinedKeyAdding.h"
#import "MyOtherClass1.h"
#import "MyOtherClass2.h"
#import "MyOtherClass3.h"
static id ExceptionlessVFUKIMP(id self, SEL cmd, NSString* inKey)
{
NSLog(#"Not throwing an exception for undefined key: %# on instance of %#", inKey, [self class]);
return nil;
}
#implementation MyAppDelegate
+ (void)initialize
{
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
[MyOtherClass1 addCustomValueForUndefinedKeyImplementation: (IMP)ExceptionlessVFUKIMP];
[MyOtherClass2 addCustomValueForUndefinedKeyImplementation: (IMP)ExceptionlessVFUKIMP];
[MyOtherClass3 addCustomValueForUndefinedKeyImplementation: (IMP)ExceptionlessVFUKIMP];
});
}
// ... rest of app delegate class ...
#end
What I'm doing here is adding a custom implementation for valueForUndefinedKey: to the classes MyOtherClass1, 2 & 3. The example implementation I've provided just NSLogs and returns nil, but you can change the implementation to do whatever you want, by changing the code in ExceptionlessVFUKIMP. If you remove the NSLog, and just return nil, I suspect you'll get what you want, based on your question.
This code NEVER swizzles methods, it only adds one if it's not there. I've put in checks to prevent this from being used on classes that already have their own custom implementations of valueForUndefinedKey: because if someone put that method in their class, there's going to be an expectation that it will continue to get called. Also note that there may be AppKit code that EXPECTS the exceptions from the NSObject/NSManagedObject implementations to be thrown. (I don't know that for sure, but it's a possibility to consider.)
A few notes:
NSManagedObject provides a custom implementation for valueForUndefinedKey: Stepping through its assembly in the debugger, all it appears to do is throw roughly the same exception with a slightly different message. Based on that 5 minute debugger investigation, I feel like it ought to be safe to use this with NSManagedObject subclasses, but I'm not 100% sure -- there could be some behavior in there that I didn't catch. Beware.
Also, as it stands, if you use this approach, you don't have a good way to know if valueForKey: is returning nil because the keyPath is valid and the state happened to be nil, or if it's returning nil because the keyPath is invalid and the grafted-on handler returned nil. To do that, you'd need to do something different, and implementation specific. (Perhaps return [NSNull null] or some other sentinel value, or set some flag in thread-local storage that you could check, but at this point is it really all that much easier than #try/#catch?) Just something to be aware of.
This appears to work pretty well for me; Hope it's useful to you.
There's no easy way to solve this. Key Value Coding (KVC) isn't intended to be used that way.
One thing is for sure: using #try-#catch is really bad since you're very likely to leak memory etc. Exceptions in ObjC / iOS are not intended for normal program flow. They're also very expensive (both throwing and setting up the #try-#catch IIRC).
If you look at the Foundation/NSKeyValueCoding.h header, the comment / documentation for
- (id)valueForKey:(NSString *)key;
clearly states which methods need to be implemented for -valueForKey: to work. This may even use direct ivar access. You would have to check each one in the order described there. You need to take the key path, split it up based on . and check each part on each subsequent object. To access ivars, you need to use the ObjC runtime. Look at objc/runtime.h.
All of this is vary hacky, though. What you probably want is for your objects to implement some formal protocol and then check -conformsToProtocol: before calling.
Are your key paths random strings or are those strings under your control? What are you trying to achieve? Are you solving the wrong problem?
I don't believe this is possible in a safe way (i.e. without mucking with -valueForUndefinedKey: or something similar on other peoples' classes). I say that because on the Mac side of things, Cocoa Bindings—which can be set to substitute a default value for invalid key paths—simply catches the exceptions that result from bad key paths. If even Apple's engineers don't have a way to test if a key path is valid without trying it and catching the exception, I have to assume that such a way doesn't exist.