How to seed database table with phone numbers using SQL? - sql

I have table in my postgres database that I'm using to store phone numbers formatted as: 12223334444 (as a varchar).
As I know i will be working with US phone numbers only i thought it would be a good idea to pre-populate the database with all phone numbers that could be requested. That is, all numbers from 11_111_111_111 through 19_999_999_999.
Right now I'm achieving this by using application code and it takes a VERY long time.
Assuming I have a table named phones and a single column named digits, is there a way to populate the database using SQL?
Thank you!

This is a bad idea.
select 19999999999 - 11111111111;
8888888888
That's about 8.9 billion phone numbers. Don't build tables that big unless you absolutely have to. Tables that big severely affect transaction logs, index size, backup size and time to complete, etc.
But, if you need to generate and load a lot of data like this for PostgreSQL, there are two sensible ways to do it.
Steps depend on whether you generate the data using PostgreSQL or using application code.
For PostgreSQL, in a transaction,
drop all the indexes and constraints,
generate and insert the data
create all the indexes and constraints, and
commit the transaction.
Inserting great amounts of data is a lot faster if you commit, say, 10k rows at a time. Experiment. If you do that, you'll need to adjust the transaction boundaries in those steps above. (Each of those steps becomes one or more transactions.)
If you go with application code, it's usually fastest to
generate a csv file using application code,
drop all the indexes and constraints,
load the csv file with COPY,
create all the indexes and constraints.

This is a crazy question, but postgres has an answer
SELECT generate_series(1,19999999999)
This will create a table with all numbers between 1 and 19999999999
INSERT INTO phone_table(phone number)
SELECT LPAD(g::VARCHAR(12),10,'0') FROM generate_series(1,19999999999) AS g;
This will still take a long time, but it will probably be faster than application code.

Related

Is it possible to implement point in time recovery (PITR) in PostgreSQL for a single table?

Let's say I have a database with lots of tables, but there's one big table that's being updated regularly. At any given point in time, this table contains billions of rows, and let's say that the table is updated so regularly that we can expect a 100% refresh of the table by the end of each quarter. So the volume of data being moved around is in the order tens of billions. Because this table is changing so constantly, I want to implement a PITR, but only for this one table. I have two options:
Hack PostgreSQL's in-house PITR to apply only for one table.
Build it myself by creating a base backup, set up continuous archiving, and using a python script to execute the log of SQL statements up to a point in time (or use PostgreSQL's EXECUTE statement to loop through the archive). The big con with this is that it won't have the timeline functionality.
My problem is, I don't know if option 1 is even possible, and I don't know if option 2 even makes sense (looping through billions of rows sounds like it defeats the purpose of PITR, which is speed and convenience.) What other options do I have?

Is it a good idea to index every column if the users can filter by any column?

In my application, users can create custom tables with three column types, Text, Numeric and Date. They can have up to 20 columns. I create a SQL table based on their schema using nvarchar(430) for text, decimal(38,6) for numeric and datetime, along with an Identity Id column.
There is the potential for many of these tables to be created by different users, and the data might be updated frequently by users uploading new CSV files. To get the best performance during the upload of the user data, we truncate the table to get rid of existing data, and then do batches of BULK INSERT.
The user can make a selection based on a filter they build up, which can include any number of columns. My issue is that some tables with a lot of rows will have poor performance during this selection. To combat this I thought about adding indexes, but as we don't know what columns will be included in the WHERE condition we would have to index every column.
For example, on a local SQL server one table with just over a million rows and a WHERE condition on 6 of its columns will take around 8 seconds the first time it runs, then under one second for subsequent runs. With indexes on every column it will run in under one second the first time the query is ran. This performance issue is amplified when we test on an SQL Azure database, where the same query will take over a minute the first time its run, and does not improve on subsequent runs, but with the indexes it takes 1 second.
So, would it be a suitable solution to add a index on every column when a user creates a column, or is there a better solution?
Yes, it's a good idea given your model. There will, of course, be more overhead maintaining the indexes on the insert, but if there is no predictable standard set of columns in the queries, you don't have a lot of choices.
Suppose by 'updated frequently,' you mean data is added frequently via uploads rather than existing records being modified. In that case, you might consider one of the various non-SQL databases (like Apache Lucene or variants) which allow efficient querying on any combination of data. For reading massive 'flat' data sets, they are astonishingly fast.

SQL Server Time Series Modelling Huge datacollection

I have to implement data collection for replay for electrical parameters for 100-1000's of devices with at least 20 parameters to monitor. This amounts to huge data collection as it will be based very similar to time series.I have to support resolution for 1 second. thinking about 1 year [365*24*60*60*1000]=31536000000 rows.
I did my research but still have few questions
As data will be huge is it good to keep data in same table or should the tables be spitted. [data structure is same] or i should
rely on indexes?
Data inserts also will be very frequent but i can batch them still what is the best way? Is it directly writing to same database
or using a temporary database for write and sync with it?
Does SQL Server has a specific schema recommendation to do time series optimization for select,update and inserts? any out of box
helps for day average ? or specific common aggregate functions i can
write my own but just to know as this a standard problem so they
might have some best practices and samples out of box.**
please let me know any help is appreciated, thanks in advance
1) You probably want to explore the use of partitions. This will allow very effective inserts (its a meta operation if you do the partitioning correctly) and very fast (2). You may want to explore columnstore indexes because the data (once collected) will never change and you will have very large data sets. Partitioning and columnstore require a learning curve but its very doable. There are lots of code on the internet describing the use of date functions in SQL Server.
That is a big number but I would start with one table see if it hold up. If you split it in multiple tables it is still the same amount of data.
Do you ever need to search across devices? If not you can have a separate table for each device.
I have some audit tables that are not that big but still big and have not had any problems. If the data is loaded in time order then make date the first (or only) column of the clustered index.
If the the PK is date, device then fine but if you can get two reading in the same seconds you cannot do that. If this is the PK then if you can load the data by that sort. Even if you have to stage each second and load. You just cannot afford to fragment a table that big. If you cannot load by the sort then take a fill factor of 50%.
If you cannot have a PK then just use date as clustered index but not as PK and put a non clustered index on device.
I have some tables of 3,000,000,000 and I have the luxury of loading by PK with no other indexes. There is no measurable degradation in insert from row 1 to row 3,000,000,000.

Fast inserts; BulkCopy with relational data

I have a large amount of constantly incoming data (roughly 10,000 a minute, and growing) that I want to insert into a database as efficiently as possible. At the moment I'm using prepared insert statements, but am thinking of using the SqlBulkCopy class to import the data in larger chunks.
The problem is that I'm not inserting into a single table - elements of the data item are inserted into numerous tables, and their identity columns are used as foreign keys in other rows that are inserted at the same time. I understand that bulk copies aren't meant to allow for more complex inserts like this, but I wonder if it is worth exchanging my identity columns (bigints in this case) for uniqueidentifier columns. This will allow me to do a couple of bulk copies for each table, and since I can determine the IDs before the insert, I don't need to check for anything like SCOPE_IDENTITY which is preventing me from using bulk copy.
Does this sound like a viable solution, or are there other potential issues I might face? Or, is there another way I can insert data quickly, but retain my use of bigint identity columns?
Thanks.
uniqueidentifier will probably make things worse: page splits and wider. See this
If your load is/can be batched, one options is to:
you load a staging table
load the real tables in one go as a stored procedure
use a uniqueidentifier in the staging table for each batch
We deal with peaks of around 50k rows per second (and increasing this way). We actually use a separate staging database to avoid double transaction log writes)
It sounds like you are planning on exchanging "SQL assigns a [bigint identity() column] surrogate key" with a "data prep routine assings a GUID surrogate key" methodology. In other words, the key will not be assigned within SQL, but from outside SQL. Given your volumes, if the data-generating process can assign surrogate key, I'd definitely go with that.
The question then becomes, must you use GUIDs, or can your data-generation process produce auto-incrementing integers? Creating such a process that works consistantly and infallibly is hard (one reason why you pay $$$ for SQL Server), but the trade-off for smaller and more human-legible keys within the database might be worth it.

Handling 100's of 1,000,000's of rows in T-SQL2005

I have a couple of databases containing simple data which needs to be imported into a new format schema. I've come up with a flexible schema, but it relies on the critical data of the to older DBs to be stored in one table. This table has only a primary key, a foreign key (both int's), a datetime and a decimal field, but adding the count of rows from the two older DBs indicates that the total row count for this new table would be about 200,000,000 rows.
How do I go about dealing with this amount of data? It is data stretching back about 10 years and does need to be available. Fortunately, we don't need to pull out even 1% of it when making queries in the future, but it does all need to be accessible.
I've got ideas based around having multiple tables for year, supplier (of the source data) etc - or even having one database for each year, with the most recent 2 years in one DB (which would also contain the stored procs for managing all this.)
Any and all help, ideas, suggestions very, deeply, much appreciated,
Matt.
Most importantly. consider profiling your queries and measuring where your actual bottlenecks are (try identifying the missing indexes), you might see that you can store everything in a single table, or that buying a few extra hard disks will be enough to get sufficient performance.
Now, for suggestions, have you considered partitioning? You could create partitions per time range, or one partition with the 1% commonly accessed and another with the 99% of the data.
This is roughly equivalent to splitting the tables manually by year or supplier or whatnot, but internally handled by the server.
On the other hand, it might make more sense to actually splitting the tables in 'current' and 'historical'.
Another possible size improvement is using an int (like an epoch) instead of a datetime and provide functions to convert from datetime to int, thus having queries like
SELECT * FROM megaTable WHERE datetime > dateTimeToEpoch('2010-01-23')
This size savings will probably have a cost performance wise if you need to do complex datetime queries. Although on cubes there is the standard technique of storing, instead of an epoch, an int in YYYYMMDD format.
What's the problem with storing this data in a single table? An enterprise-level SQL server like Microsoft SQL 2005 can handle it without much pain.
By the way, do not do tables per year, tables per supplier or other things like this. If you have to store similar set of items, you need one and one only table. Setting multiple tables to store the same type of things will cause problems, like:
Queries would be extremely difficult to write, and performance will be decreased if you have to query from multiple tables.
The database design will be very difficult to understand (especially since it's not something natural to store the same type of items in different places).
You will not be able to easily modify your database (maybe it's not a problem in your case), because instead of changing one table, you would have to change every table.
It would require to automate a bunch of tasks. Let's see you have a table per year. If a new record is inserted on 2011-01-01 00:00:00.001, will a new table be created? Will you check at each insert if you must create a new table? How it would affect performance? Can you test it easily?
If there is a real, visible separation between "recent" and "old" data (for example you have to use daily the data saved the last month only, and you have to keep everything older, but you do not use it), you can build a system with two SQL servers (installed on different machines). The first, highly available server, will serve to handle recent data. The second, less available and optimized for writing, will store everything else. Then, on schedule, a program will move old data from the first one to the second.
With such a small tuple size (2 ints, 1 datetime, 1 decimal) I think you will be fine having a single table with all the results in it. SQL server 2005 does not limit the number of rows in a table.
If you go down this road and run in to performance problems, then it is time to look at alternatives. Until then, I would plow ahead.
EDIT: Assuming you are using DECIMAL(9) or smaller, your total tuple size is 21 bytes which means that you can store the entire table in less than 4 GB of memory. If you have a decent server(8+ GB of memory) and this is the primary memory user, then the table and a secondary index could be stored in memory. This should ensure super fast queries after a slower warm-up time before the cache is populated.