I've searched but I can't seem to find the complexity of the Flood Fill Algorithm (Four-way ver.). What exactly is the complexity in big O notation?
The time complexity would be O(4*mn)=(mn) because each cell of matrix is processed at most 4 times. For Example, a particular cell can be called by its top, down, left or right cell.
The complexity of the flood fill algorithm is proportional to the number of pixels in the filled area. So, if you have e.g. a square, and M is the number of pixels in the square and N is the length of the side of a square, then M = N^2 and the complexity is O(M) = O(N^2).
By the way, this question has already been answered in a comment in Stackoverflow. See How can I improve the performance of my flood-fill routine?
In worst-case, all cells of the matrix will be covered.
In terms of complexity time, this algorithm will be equals the recursive one: O(N×M)O(N×M), where N and M are the dimensions of the input matrix. The key idea is that in both algorithms each node is processed at most once.
Please refer below link for better understaning and more cases:
https://www.hackerearth.com/practice/algorithms/graphs/flood-fill-algorithm/tutorial/
The time complexity of the Flood Fill algorithm should be O(m×n) , where m= no. of rows and n=no. of columns in the given matrix.
Note that every element of matrix is processed at most three times.
So, it boils down to O(3×mn), which eventually is same as O(mn).
Related
Given an array A size of n of real numbers. It consists of n/logn sorted
sequences (each sequence of size logn).
Prove that it's not possible to sort the array A in time complexity of
o(nlogn) (Small o nation) in worst case.
Make an assumption that its possible then to contradict it with lower
bound theorem.
I need help in just understanding the question. As what I have concluded that they are asking to prove that we can't get any sorting algorithm less than O(nlogn)?
Thanks for your willingness to help.
Straight to the point, I'm confused with the use of Big O notation when analyzing the worst case time complexity of search algorithms.
For example, the worst case time complexity of Alpha-Beta Pruning is O(b^d) where ^ means ~ to the power of ~, b representing the average branching factor and d representing the depth of the search tree.
I do get that the worst case time complexity would be less or equal to a positive constant multiplied by b^d, but why is the use of big O notation permitted here? Where did the variable n, the input size, go? I do know that the input of same size might cause significant difference in time complexity of an algorithm.
All of the research I've done only explains "the use of big o notation in the analysis of worst case time complexity" in terms of the growth function, a function that has variable y as time complexity and variable x as input size. There are also formal definitions of big o notation, which make me even more confused with the question above. definition 1definition 2
Any attempts to answer my question would be greatly appreciated.
The input size you refer here to n is in this case d. If n is the amount of entries in your tree, d can be calculated by ln_2(n), assuming your tree is a balanced binary tree.
Big O notation implies that you are discussing what the runtime would be for a very large n. In the case you noted, O(b^d), the n is the variable that changes with input size. In this case, d would be your n. As you've found, some notations make use of many variables.
n is just a general term for the number of elements, but runtime could vary on many factors- depth of a tree, or a different list entirely. For example, to traverse lists like this:
for n in firstList:
for k in secondList:
do stuff
the cost would be O(n*k).
I have implemented an algorithm that uses two other algorithms for calculating the shortest path in a graph: Dijkstra and Bellman-Ford. Based on the time complexity of the these algorithms, I can calculate the running time of my implementation, which is easy giving the code.
Now, I want to experimentally verify my calculation. Specifically, I want to plot the running time as a function of the size of the input (I am following the method described here). The problem is that I have two parameters - number of edges and number of vertices.
I have tried to fix one parameter and change the other, but this approach results in two plots - one for varying number of edges and the other for varying number of vertices.
This leads me to my question - how can I determine the order of growth based on two plots? In general, how can one experimentally determine the running time complexity of an algorithm that has more than one parameter?
It's very difficult in general.
The usual way you would experimentally gauge the running time in the single variable case is, insert a counter that increments when your data structure does a fundamental (putatively O(1)) operation, then take data for many different input sizes, and plot it on a log-log plot. That is, log T vs. log N. If the running time is of the form n^k you should see a straight line of slope k, or something approaching this. If the running time is like T(n) = n^{k log n} or something, then you should see a parabola. And if T is exponential in n you should still see exponential growth.
You can only hope to get information about the highest order term when you do this -- the low order terms get filtered out, in the sense of having less and less impact as n gets larger.
In the two variable case, you could try to do a similar approach -- essentially, take 3 dimensional data, do a log-log-log plot, and try to fit a plane to that.
However this will only really work if there's really only one leading term that dominates in most regimes.
Suppose my actual function is T(n, m) = n^4 + n^3 * m^3 + m^4.
When m = O(1), then T(n) = O(n^4).
When n = O(1), then T(n) = O(m^4).
When n = m, then T(n) = O(n^6).
In each of these regimes, "slices" along the plane of possible n,m values, a different one of the terms is the dominant term.
So there's no way to determine the function just from taking some points with fixed m, and some points with fixed n. If you did that, you wouldn't get the right answer for n = m -- you wouldn't be able to discover "middle" leading terms like that.
I would recommend that the best way to predict asymptotic growth when you have lots of variables / complicated data structures, is with a pencil and piece of paper, and do traditional algorithmic analysis. Or possibly, a hybrid approach. Try to break the question of efficiency into different parts -- if you can split the question up into a sum or product of a few different functions, maybe some of them you can determine in the abstract, and some you can estimate experimentally.
Luckily two input parameters is still easy to visualize in a 3D scatter plot (3rd dimension is the measured running time), and you can check if it looks like a plane (in log-log-log scale) or if it is curved. Naturally random variations in measurements plays a role here as well.
In Matlab I typically calculate a least-squares solution to two-variable function like this (just concatenates different powers and combinations of x and y horizontally, .* is an element-wise product):
x = log(parameter_x);
y = log(parameter_y);
% Find a least-squares fit
p = [x.^2, x.*y, y.^2, x, y, ones(length(x),1)] \ log(time)
Then this can be used to estimate running times for larger problem instances, ideally those would be confirmed experimentally to know that the fitted model works.
This approach works also for higher dimensions but gets tedious to generate, maybe there is a more general way to achieve that and this is just a work-around for my lack of knowledge.
I was going to write my own explanation but it wouldn't be any better than this.
My problem is explained in the following image
http://i.stack.imgur.com/n6mZt.png
I have a finite (but rather large) amount of such pieces that need to be stacked in a way so that the REMAINING area is the smallest possible. The pieces are locked in the horizontal axis (time) and have fixed height. They can only be stacked.
The remaining area is defined by the maximum point of the stack that depends on which pieces have been selected. The best combination in the example image would be the [1 1 0]. (The trivial [0 0 0] case will not be allowed by other constraints)
My only variables are binaries (Yes or No) for each piece. The objective is a little more complicated than what I am describing, but my greatest problem right now is how to formulate the expression
Max{Stacked_Pieces} - Stacked_Pieces_Profile
in the objective function. The result of this expression is a vector of course (timeseries) but it will be further reduced to a number through other manipulations.
Essentially my problem is how to write
Max{A} - A, where A = 1xN vector
In a way compatible with a linear (or even quadratic) objective. Or am I dealing with a non-linear problem?
EDIT: The problem is like a Knapsack problem the main difference being that there is no knapsack to fill up. i.e. the size of the knapsack varies according to the selected pieces and is always equal to the top of the stacked profile
Thanks everybody!
From what I understand you can basically try to solve it as a normal knapsack problem in multiple iterations, finding the minimal.
Now, finding the height of the knapsack is a problem, which means you need multiple iterations. Because you need to solve the knapsack problem to see if a certain height will work, you need multiple iterations.
Note that you do know an upper and a lower bound for the height. I'm not sure if rotation is applicable, but you can fill in the gaps here:
Min = max(max height of smallest piece, total size / width)
Max = sum(height of all pieces).
Basically solving it means finding the smallest height [Min <= x <= Max] that fits all pieces. The easiest way to do that is by using a 'for' loop, but you can do it better:
Try min, max, half
if half fits -> max = half; iterate (goto 1)
if half doesn't fit -> min = half; iterate (goto 1)
As for solving the knapsack problem, for each iteration, I'd check if all pieces can still be fitted. Use bit-masks and AND/OR/XOR operations if you can to speed things up.
Basically you can do it like this:
Grab bit 'x'. Fill with next block
Check if this leads to a possible solution
Find next bit that can be filled
Note that you might want to use intrinsics in C++ to speed this up. Modern CPU's are quite good with this.
As for code: I've made some code that solves the bedlam cube in the past; I'm pretty sure that if you google for that, you'll find some fast solvers.
Good luck!
I am computing a similarity matrix based on Euclidean distance in MATLAB. My code is as follows:
for i=1:N % M,N is the size of the matrix x for whose elements I am computing similarity matrix
for j=1:N
D(i,j) = sqrt(sum(x(:,i)-x(:,j)).^2)); % D is the similarity matrix
end
end
Can any help with optimizing this = reducing the for loops as my matrix x is of dimension 256x30000.
Thanks a lot!
--Aditya
The function to do so in matlab is called pdist. Unfortunately it is painfully slow and doesnt take Matlabs vectorization abilities into account.
The following is code I wrote for a project. Let me know what kind of speed up you get.
Qx=repmat(dot(x,x,2),1,size(x,1));
D=sqrt(Qx+Qx'-2*x*x');
Note though that this will only work if your data points are in the rows and your dimensions the columns. So for example lets say I have 256 data points and 100000 dimensions then on my mac using x=rand(256,100000) and the above code produces a 256x256 matrix in about half a second.
There's probably a better way to do it, but the first thing I noticed was that you could cut the runtime in half by exploiting the symmetry D(i,j)==D(i,j)
You can also use the function norm(x(:,i)-x(:,j),2)
I think this is what you're looking for.
D=zeros(N);
jIndx=repmat(1:N,N,1);iIndx=jIndx'; %'# fix SO's syntax highlighting
D(:)=sqrt(sum((x(iIndx(:),:)-x(jIndx(:),:)).^2,2));
Here, I have assumed that the distance vector, x is initalized as an NxM array, where M is the number of dimensions of the system and N is the number of points. So if your ordering is different, you'll have to make changes accordingly.
To start with, you are computing twice as much as you need to here, because D will be symmetric. You don't need to calculate the (i,j) entry and the (j,i) entry separately. Change your inner loop to for j=1:i, and add in the body of that loop D(j,i)=D(i,j);
After that, there's really not much redundancy left in what that code does, so your only room left for improvement is to parallelize it: if you have the Parallel Computing Toolbox, convert your outer loop to a parfor and before you run it, say matlabpool(n), where n is the number of threads to use.