what is the n queens complexity time by Back Tracking Method? - time-complexity

What is the n queens complexity time by Back Tracking Method?
and what is the count of Queens Position?
With below algorithm :
void queens (index i)
{
index j;
if (promising(i))
if (i == n)
cout << col[1] through col[n];
else
for (j = 1; j <= n; j++) {
col[i + 1] = j;
queens(i + 1);
}
}
bool promising (index i)
{
index k;
bool Switch;
k = 1;
Switch = true ;
while (k < i && switch) {
if (col[i] == col[k] || abs(col[i] – col[k] == i - k))
switch = false;
k++;
}
return Switch;
}
Any suggestion?

Related

Did i calculate the Big O for these functions correctly?

I tried to find the time complexity of the following two functions:
the first one
public static int myMethod1(int[] arr) {
int x = 0;
for (int i = 0; i < arr.length / 2; i++) {
for (int j = 0; j < arr.length; j++) {
for (int k = 0; k < arr.length; k++) {
x++;
if (k == arr.length / 2) {
break;
}
}
}
}
return x;
}
So with this one i am thinking.
The method contains 3 loops, and the loops are iterating over variable i, j and k…
i and j, and k are both incremented by 1 for each passing… this gives us as N For each LOOP which leaves us with three N’s.., which gives is O(N^3)
The next one is:
public static int myMethod(int N) {
int x = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N / 2; j++) {
for (int k = 1; k < N;) {
x++;
k *= 2;
}
}
}
return x;
}
With this i am thinking.
The method contains 3 loops, and the loops are iterating over variable i, j and k… i and j are both incremented by 1 for each passing… this gives us as N For each LOOP which leaves us with two N’s.. The last loop k doubles, which gives is log(n).
The result of the this problem is therefore O(N^2· log (N))
is this correct? and if it is not, why?
You are right. In both of the questions

Exception thrown at 0x7A12FF80 (ucrtbased.dll) in Project 3.exe: 0xC0000005: Access violation reading location 0x00000000

I have attempted to run this code. Prior to running this, no warnings or errors exist but once it is executed I have an exception thrown and it stops the program from compiling. Here is my code and the error is in the subject line. The CDA file is being used as header file to create a Circular Dynamic Array that is going to be manipulated in Heaps.cpp. The heaps.cpp is to create a binary heap that is to be used in to create Binomial heaps, but that code has not been developed yet.
#include <iostream>
using namespace std;
template <class T>
class CDA
{
private:
int rear;
int size;
int capacity;
T* circArray;
int front;
bool ordered;
T placeHolder;
public:
CDA();
CDA(int s);
~CDA();
int Front();
T Data(int n);
T& operator[](int i);
void AddEnd(T v);
void AddFront(T v);
void DelEnd();
void DelFront();
int Length();
int Capacity();
int Clear();
bool Ordered();
int SetOrdered();
int S01(int n);
T Select(int k);
void InsertionSort();
void QuickSort();
void QuickSort1(int low, int high);
void CountingSort(int m);
int Search(T e);
void reSize();
void Shrink();
int BinarySearch(int left, int right, T e);
int QSortPartition(int low, int high);
void Swap(int* x, int* y);
int QSelPartition(int front, int rear);
T QuickSelect(int front, int rear, int k);
CDA<T>& operator=(const CDA& a);
CDA(const CDA& old);
int Median(int low, int high);
};
template <class T>
CDA<T>::CDA()
{
capacity = 1;
circArray = new T[capacity];
size = 0;
rear = size - 1;
front = -1;
ordered = false;
placeHolder = 0;
}
template <class T>
CDA<T>::CDA(int s)
{
size = s;
capacity = s;
circArray = new T[capacity];
front = 0;
rear = size - 1;
ordered = false;
}
template <class T>
CDA<T>::CDA(const CDA& a)
{
size = a.size;
capacity = a.capacity;
circArray = new T[a.capacity];
front = a.front;
rear = a.size - 1;
ordered = a.ordered;
for (int i = a.front; i < a.front + (a.size); i++)
{
circArray[i % capacity] = a.circArray[i % capacity];
}
}
template <class T>
CDA<T>::~CDA()
{
delete[]circArray;
}
template <class T>
T& CDA<T>::operator[](int i)
{
if (i > capacity)
{
cout << "Array index is out of bounds; exiting." << endl;
placeHolder = i;
cout << endl;
return placeHolder;
exit(0);
}
else
{
return circArray[(front + i) % capacity];
}
}
template <class T>
void CDA<T>::AddEnd(T v)
{
size++;
if (front == -1)
{
circArray[0] = v;
front++;
rear++;
return;
}
if (size > capacity)
{
reSize();
}
else if (front == -1)
{
front = 0;
rear = size - 1;
}
else
{
rear = (rear + 1) % capacity;
}
circArray[rear] = v;
}
template <class T>
void CDA<T>::AddFront(T v)
{
size++;
if (size > capacity)
{
reSize();
}
if (front == -1) //means the array is empty
{
front = 0;
rear = capacity % size;
}
else if (front == 0) //means something is in spot 0
{
front = capacity - 1; //puts front at the end and places the input there
}
else //go until it is back at zero
{
front--;
}
circArray[front] = v;
}
template <class T>
void CDA<T>::DelEnd()
{
size--;
if (size <= capacity / 4)
{
Shrink();
}
else if (rear == front)
{
front = -1;
rear = -1;
}
else
{
rear--;
}
}
template <class T>
void CDA<T>::DelFront()
{
size--;
double shrMeasure;
shrMeasure = capacity / 4.0;
if (size <= shrMeasure) // make an empty and shrink function
{
Shrink();
}
/*
else if (front == rear)
{
if (front == 0)
front = size - 1;
else
front++;
}
*/
else
{
if (front == size) //brings it full circle
{
front = 0;
}
else
{
front++;
}
}
if (front > capacity)
front = front % capacity;
}
template <class T>
int CDA<T>::Length()
{
return size;
}
template <class T>
int CDA<T>::Capacity()
{
return capacity;
}
template <class T>
int CDA<T>::Clear()
{
~CDA();
size = 1;
circArray[size] = NULL;
}
template <class T>
bool CDA<T>::Ordered()
{
return ordered;
}
template <class T>
int CDA<T>::SetOrdered()
{
for (int i = 1; i < size - 1; i++)
{
if (circArray[(i - 1)] > circArray[i])
{
ordered = false;
return -1;
}
}
ordered = true;
return 1;
}
template <class T>
T CDA<T>::Select(int k)
{
if (ordered == true)
{
return circArray[(front + k - 1) % capacity];
}
else
QuickSelect(front, front + (size - 1), k);
}
template <class T>
int CDA<T>::QSelPartition(int left, int right)
{
int pivot = circArray[right % capacity];
int x = left - 1;
//Swap(&circArray[pivIndex], &circArray[right]);
for (int i = left; i <= right - 1; i++)
{
if (circArray[i % capacity] <= pivot)
{
x++;
Swap(&circArray[x % capacity], &circArray[i % capacity]);
}
}
Swap(&circArray[(x + 1) % capacity], &circArray[right % capacity]);
return (x + 1);
}
template <class T>
T CDA<T>::QuickSelect(int left, int right, int k)
{
if (k > 0 && k <= (right - left) + 1)
{
int index = QSelPartition(left, right);
if (index - 1 == k - 1)
return circArray[index % capacity];
else if (index - 1 > k - 1)
return QuickSelect(left, index - 1, k);
else
return QuickSelect(index - 1, right, k - index + left - 1);
}
return -1;
}
template <class T>
void CDA<T>::InsertionSort() //must be utilized in quicksort
{
for (int i = front + 1; i < (front + size); i++)
{
int val = circArray[i % capacity];
int inc = (i - 1) % capacity;
while (inc >= 0 && circArray[inc] > val)
{
circArray[(inc + 1) % capacity] = circArray[inc];
inc--;
if (inc == -1)
{
inc = capacity - 1;
}
}
circArray[(inc + 1) % capacity] = val;
}
ordered = true;
}
template <class T>
void CDA<T>::QuickSort() // change to other quicksort before leaving the ferg
{
QuickSort1(front, front + (size - 1));
}
template <class T>
void CDA<T>::QuickSort1(int low, int high)
{
while (low < high)
{
if (high - low < 900)
{
InsertionSort();
break;
}
else
{
int pivot = QSortPartition(low, high);
if (pivot - low < high - pivot)
{
QuickSort1(low, pivot--);
low = pivot + 1;
}
else
{
QuickSort1(pivot++, high);
high = pivot - 1;
}
}
}
}
template <class T>
int CDA<T>::QSortPartition(int low, int high)
{
int pivot = circArray[Median(low, high) % capacity];
Swap(&circArray[(Median(low, high)) % capacity], &circArray[(high) % capacity]);
int index = low % capacity;
for (int i = low; i < high; i++)
{
if (circArray[i % capacity] <= pivot)
{
T t = circArray[i % capacity];
circArray[i % capacity] = circArray[index % capacity];
circArray[index % capacity] = t;
index++;
}
}
Swap(&circArray[index % capacity], &circArray[high % capacity]);
return index;
}
template <class T>
int CDA<T>::Median(int low, int high)
{
T left, mid, right;
left = circArray[low % capacity];
mid = circArray[((low + high) / 2) % capacity];
right = circArray[high % high];
if (left < right && left > mid)
return low % capacity;
if (left < mid && left > right)
return low % capacity;
if (right < left && right > mid)
return high % capacity;
if (right < mid && right > left)
return high % capacity;
if (mid < left && mid > right)
return ((low + high) / 2 % capacity);
if (mid < right && mid > left)
return ((low + high) / 2 % capacity);
}
template <class T>
void CDA<T>::Swap(int* x, int* y)
{
int temp = *x;
*x = *y;
*y = temp;
}
template <class T>
void CDA<T>::CountingSort(int m) ////NEED TO FIX THIS
{
int* OP = new int[size];
int* Counter = new int[m + 1];
for (int i = front; i <= rear; i++)
{
cout << "CircArray[" << i << "] is " << circArray[i] << endl;
}
for (int i = 0; i <= m; i++)
{
Counter[i] = 0;
}
for (int i = front; i < front + (size); i++)
{
Counter[circArray[i % capacity]]++;
}
for (int i = 1; i <= m; i++)
{
Counter[i] += Counter[i - 1];
}
for (int i = rear - 1; i > 0; i--)
{
OP[Counter[circArray[i]] - 1] = circArray[i];
cout << "Circular array at " << i << " is " << circArray[i] << endl;
Counter[circArray[i]] -= 1;
if (i == front % capacity)
break;
if (i == 0)
i = capacity;
}
for (int i = 0; i < size; i++)
circArray[i] = OP[i];
ordered = true;
front = 0;
}
template <class T>
int CDA<T>::Search(T e)
{
if (ordered == true) //binary search of item e
{
return BinarySearch(front, front + (size - 1), e);
}
else if (ordered == false)
{
for (int i = 0; i < size - 1; i++)
{
if (circArray[i] == e)
return i;
}
}
return -1;
}
template <class T>
int CDA<T>::BinarySearch(int left, int right, T e)
{
while (left <= right)
{
int mid = (left + right) / 2;
int value = circArray[mid % capacity];
if (value == e)
return (mid - front) % capacity;
else if (value < e)
return BinarySearch(mid + 1, right, e);
else if (value > e)
return BinarySearch(left, mid - 1, e);
}
return -1;
}
template <class T>
void CDA<T>::reSize()
{
capacity = capacity * 2;
T *nArray = new T[capacity];
for (int i = 0; i < size - 1; i++)
{
int l = (front + i) % (size-1);
nArray[i] = circArray[l];
}
//delete[]circArray;
circArray = nArray;
front = 0;
rear = (size - 1);
}
template <class T>
void CDA<T>::Shrink()
{
int tFront = front;
capacity = capacity / 2;
T* bArr = new T[capacity];
int index = 0;
while (front <= rear)
{
bArr[index] = circArray[(front + index) % capacity];
index++;
}
T* circArray = bArr;
front = 0;
rear = (size - 1);
}
template <class T>
CDA<T>& CDA<T>::operator=(const CDA<T>& a)
{
if (this != &a)
{
delete[]circArray;
size = a.size;
capacity = a.capacity;
circArray = new T[a.capacity];
front = a.front;
rear = a.size - 1;
ordered = a.ordered;
for (int i = a.front; i < a.front + (a.size); i++)
{
circArray[i % capacity] = a.circArray[i % capacity];
}
}
return *this;
}
template <class T>
int CDA<T>::Front()
{
return front;
}
template <class T>
T CDA<T>::Data(int n)
{
return circArray[n];
}
#include <iostream>
#include "CDA-1.cpp"
using namespace std;
template<class keytype, class valuetype>
class Heap
{
private:
CDA<keytype>* K;
CDA<valuetype>* V;
int size;
public:
Heap()
{
this->K = new CDA<keytype>();
this->V = new CDA<valuetype>();
size = 0;
}
Heap(keytype k[], valuetype v[], int s)
{
//allocate two different arrays for each type
//fill those arrays concurrently using insert
//sort concurrently using heapafy recursively
this->K = new CDA<keytype>(s);
this->V = new CDA<valuetype>(s);
this->size = s;
for (int i = 0; i < s; i++)
{
insert(k[i], v[i]);
}
heapify(s, K->Front());
}
void heapify(int s, int i)
{
//Errors for evans to fix: swap the n's with s.
//Fix the left and right variable logic. Hepaify smallest not small at the bottom.
//Also we need to pass V[] in a parameter so we can edit it in this.
//How to better swap V with K and not just K.
int smallest = i;
int left = 2*i +(-i+1);
int right = 2*i + (-i+2);
keytype kl = K->Data(left);
keytype kr = K->Data(right);
keytype ks = K->Data(smallest);
if (left < s && kl < ks) //FIX
smallest = left;
if (right < s && kr < ks) //FIX
smallest = right;
if (smallest != i)
{
swap(K[i], K[smallest]);
swap(V[i], V[smallest]); //FIX
heapify(s, smallest);
}
}
~Heap() {
return;
}
//items should be inserted using bottom up heap building method
void insert(keytype k, valuetype v)
{
K->AddEnd(k);
V->AddEnd(v);
heapify(size, K->Front());
}
keytype peekKey()
{
int f = K->Front();
return K->Data(f);
}
valuetype peekValue()
{
int f = V->front();
return V->Data(f);
}
keytype extractMin()
{
keytype temp = K->Data(K->Front());
K->DelFront();
V->DelFront();
heapify(size, K->Front());
return temp;
}
void printKey()
{
ActualPrintKey(K->Front());
}
void ActualPrintKey(int n)
{
keytype rt = K->Data(n);
if (rt != size)
{
cout << K->Data(rt) << " ";
ActualPrintKey((2 * n) + (-n + 1));
ActualPrintKey((2 * n) + (-n + 2));
}
}
};
/*
template <class keytype, class valuetype>
class BHeap
{
BHeap();
BHeap(keytype k[], valuetype v[], int s);
~BHeap();
keytype peekKey();
valuetype peekValue();
keytype extractMin();
//items should be inserted using repeated insertion
void insert(keytype k, valuetype v);
void merge(BHeap<keytype, valuetype>& H2);
void printKey();
};
*/
#include <iostream>
#include "Heaps.cpp"
using namespace std;
int main() {
string K[10] = { "A", "B", "C", "D", "E", "F", "G", "H", "I", "K" };
int V[10] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 };
Heap<string, int> T1, T2(K, V, 10);
cout << T2.peekKey() << endl;
cout << endl;
system("pause");
return 0;
}
In general "Access violation reading location", means you are trying to read virtually memory address space to a process which does not belong to your application and the operating system protective mechanism is kicking in to protect the rest of the loaded applications and resource from been accessed (read or write) by your application "memory leak vulnerability". If I was at your place I would review the code and all variables and arrays if they are properly initialized before use. Another thing which needs to be taken in consideration is the operating system and the permissions required by your application (Windows run as Administrator / GNU/Linux sudo).
Cheers

Comparing Execution time with Time Complexity in Merge & Quick Sort

I have implemented Merge & Quick Sort in the textbook what I've learned, and it says Time Complexities of each sorts are like this:
Merge Sort: O(n.log(n)) / Quick Sort: average O(n.log(n)) and O(n2) in the worst case (if key array is sorted).
So I executed the programs with Two types of Arrays: sorted and random, with different sizes.
Since I wanted to get the Average time, I have tried 10 times per each case.
Here is the code of Merge & Quick Sort:
#include <iostream>
#include <ctime>
#include <vector>
#include <algorithm>
using namespace std;
void Merge(vector<int>& s, int low, int mid, int high) {
int i = low;
int j = mid + 1;
int k = low;
vector<int> u(s);
while (i <= mid && j <= high) {
if (s.at(i) < s.at(j)) {
u.at(k) = s.at(i);
i++;
} else {
u.at(k) = s.at(j);
j++;
}
k++;
}
if (i > mid) {
for (int a = j; a < high + 1; a++) {
u.at(k) = s.at(a);
k++;
}
} else {
for (int a = i; a < mid + 1; a++) {
u.at(k) = s.at(a);
k++;
}
}
for (int a = low; a < high + 1; a++)
s.at(a) = u.at(a);
}
void MergeSort(vector<int>& s, int low, int high) {
int mid;
if (low < high) {
mid = (low + high) / 2;
MergeSort(s, low, mid);
MergeSort(s, mid + 1, high);
Merge(s, low, mid, high);
}
}
void swap(int& a, int& b) {
int tmp = a;
a = b;
b = tmp;
}
void Partition(vector<int>& s, int low, int high, int& pvpoint) {
int j;
int pvitem;
pvitem = s.at(low);
j = low;
for (int i = low + 1; i <= high; i++) {
if (s.at(i) < pvitem) {
j++;
swap(s.at(i), s.at(j));
}
pvpoint = j;
swap(s.at(low), s.at(pvpoint));
}
}
void QuickSort(vector<int>& s, int low, int high) {
int pvpoint;
if (high > low) {
Partition(s, low, high, pvpoint);
QuickSort(s, low, pvpoint - 1);
QuickSort(s, pvpoint + 1, high);
}
}
And each of these main() functions are printing the execution times in SORTED, and RANDOM key arrays.
you can see the result with adding one of these main functions in Visual Studio(C++):
//Sorted key array
int main() {
int s;
for (int i = 1; i < 21; i++) { //Size is from 300 to 6000
s = i * 300;
vector<int> Arr(s);
cout << "N : " << s << "\n";
//Assign Random numbers to each elements
Arr.front() = rand() % Arr.size();
for (int j = 1; j < Arr.size(); j++) { Arr.at(j) = ((737 * Arr.at(j - 1) + 149) % (Arr.size() * 5)); }
sort(Arr.begin(), Arr.end());
//QuickSort(Arr, 0, Arr.size() - 1); <- you can switch using this instead of MergeSort(...) below
for (int i = 0; i < 10; i++) { //print 10 times of execution time
clock_t start, end;
start = clock();
MergeSort(Arr, 0, Arr.size() - 1);
end = clock() - start;
printf("%12.3f ", (double)end * 1000.0 / CLOCKS_PER_SEC);
}
cout << endl;
}
return 0;
}
//Random key array
int main() {
int s;
for (int i = 1; i < 21; i++) {
s = i * 3000;
vector<int> Arr(s);
cout << "N : " << s << "\n";
for (int i = 0; i < 10; i++) {
//Assign Random numbers to each elements
Arr.front() = rand() % Arr.size();
for (int j = 1; j < Arr.size(); j++) { Arr.at(j) = ((737 * Arr.at(j - 1) + 149) % (Arr.size() * 5)); }
//QuickSort(Arr, 0, Arr.size() - 1); <- you can switch using this instead of MergeSort(...) below
clock_t start, end;
start = clock();
MergeSort(Arr, 0, Arr.size() - 1);
end = clock() - start;
printf("%12.3f ", (double)end * 1000.0 / CLOCKS_PER_SEC);
}
cout << endl;
}
return 0;
}
And the THING is, the result is not matching with their time complexity. for example, Merge sort in(RANDOM Array)
size N=3000 prints 20 ms, but size N=60000 prints 1400~1600 ms !! it supposed to print almost 400 ms because Time complexity (Not in worse case) in Quick Sort is O(n.log(n)), isn't it? I want to know what affects to this time and how could I see the printed time that I expected.
You posted the same code in this question: Calculate Execution Times in Sort algorithm and you did not take my answer into account.
Your MergeSort function has a flaw: you duplicate the whole array in merge causing a lot of overhead and quadratic time complexity. This innocent looking definition: vector<int> u(s); defines u as a vector initialized as a copy of s, the full array.
C++ is a very powerful language, often too powerful, littered with traps and pitfalls such as this. It is a very good thing you tried to verify that your program meets the expected performance from the known time complexity of the algorithm. Such a concern is alas too rare.
Here are some guidelines:
For getting execution time:
#include <time.h>
int main()
{
struct timeval stop, start;
int arr[10000];
gettimeofday(&start, NULL);
mergeSort(arr, 0, 9999);
gettimeofday(&stop, NULL);
printf("Time taken for Quick sort is: %ld microseconds\n",
(stop.tv_sec-start.tv_sec)*1000000+stop.tv_usec-start.tv_usec);
}

What is the time complexity of this function?

Here's a sample solution for Sliding Window Maximum problem in Java.
Given an array nums, there is a sliding window of size k which is
moving from the very left of the array to the very right. You can only
see the k numbers in the window. Each time the sliding window moves
right by one position.
I want to get the time and space complexity of this function. Here's what I think would be the answer:
Time: O((n-k)(k * logk)) == O(nklogk)
Space (auxiliary): O(n) for return int[] and O(k) for pq. Total of O(n).
Is this correct?
private static int[] maxSlidingWindow(int[] a, int k) {
if(a == null || a.length == 0) return new int[] {};
PriorityQueue<Integer> pq = new PriorityQueue<Integer>(k, new Comparator<Integer>() {
// max heap
public int compare(Integer o1, Integer o2) {
return o2 - o1;
}
});
int[] result = new int[a.length - k + 1];
int count = 0;
// time: n - k times
for (int i = 0; i < a.length - k + 1; i++) {
for (int j = i; j < i + k; j++) {
// time k*logk (the part I'm not sure about)
pq.offer(a[j]);
}
// logk
result[count] = pq.poll();
count = count + 1;
pq.clear();
}
return result;
}
You're right in most of the part except -
for (int j = i; j < i + k; j++) {
// time k*logk (the part I'm not sure about)
pq.offer(a[j]);
}
Here total number of executions is log1 + log2 + log3 + log4 + ... + logk. The summation of this series -
log1 + log2 + log3 + log4 + ... + logk = log(k!)
And second thought is, you can do it better than your linearithmic time solution using double-ended queue property which will be O(n). Here is my solution -
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums == null || k <= 0) {
return new int[0];
}
int n = nums.length;
int[] result = new int[n - k + 1];
int indx = 0;
Deque<Integer> q = new ArrayDeque<>();
for (int i = 0; i < n; i++) {
// remove numbers out of range k
while (!q.isEmpty() && q.peek() < i - k + 1) {
q.poll();
}
// remove smaller numbers in k range as they are useless
while (!q.isEmpty() && nums[q.peekLast()] < nums[i]) {
q.pollLast();
}
q.offer(i);
if (i >= k - 1) {
result[indx++] = nums[q.peek()];
}
}
return result;
}
HTH.

Finding all cycles in directed graphs of length <= k

Is there a way of modifing the algorithm in
Finding all cycles in undirected graphs
to consider edges as directed and only cycles of length <= k ?
I reply by myself
static void Main(string[] args)
{
int k = 4;
for (int i = 0; i < graph.GetLength(0); i++)
for (int j = 0; j < graph.GetLength(1); j++)
{
findNewCycles(new int[] { graph[i, j] },k);
}
foreach (int[] cy in cycles)
{
string s = "" + cy[0];
for (int i = 1; i < cy.Length; i++)
s += "," + cy[i];
Console.WriteLine(s);
}
}
static void findNewCycles(int[] path, int k)
{
int n = path[0];
int x;
int[] sub = new int[path.Length + 1];
if (path.Length < k + 1)
{
for (int i = 0; i < graph.GetLength(0); i++)
for (int y = 0; y <= 1; y = y + 2)
if (graph[i, y] == n)
// edge referes to our current node
{
x = graph[i, (y + 1) % 2];
if (!visited(x, path))
// neighbor node not on path yet
{
sub[0] = x;
Array.Copy(path, 0, sub, 1, path.Length);
// explore extended path
findNewCycles(sub,k);
}
else if ((path.Length > 2) && (x == path[path.Length - 1]))
// cycle found
{
int[] p = normalize(path);
int[] inv = invert(p);
if (isNew(p) && isNew(inv))
cycles.Add(p);
}
}
}
}
static bool equals(int[] a, int[] b)
{
bool ret = (a[0] == b[0]) && (a.Length == b.Length);
for (int i = 1; ret && (i < a.Length); i++)
if (a[i] != b[i])
{
ret = false;
}
return ret;
}
static int[] invert(int[] path)
{
int[] p = new int[path.Length];
for (int i = 0; i < path.Length; i++)
p[i] = path[path.Length - 1 - i];
return normalize(p);
}
// rotate cycle path such that it begins with the smallest node
static int[] normalize(int[] path)
{
int[] p = new int[path.Length];
int x = smallest(path);
int n;
Array.Copy(path, 0, p, 0, path.Length);
while (p[0] != x)
{
n = p[0];
Array.Copy(p, 1, p, 0, p.Length - 1);
p[p.Length - 1] = n;
}
return p;
}
static bool isNew(int[] path)
{
bool ret = true;
foreach (int[] p in cycles)
if (equals(p, path))
{
ret = false;
break;
}
return ret;
}
static int smallest(int[] path)
{
int min = path[0];
foreach (int p in path)
if (p < min)
min = p;
return min;
}
static bool visited(int n, int[] path)
{
bool ret = false;
foreach (int p in path)
if (p == n)
{
ret = true;
break;
}
return ret;
}
}