What is the naming convention for assembles template plugins? - naming-conventions

I'm creating a nunjucks plug-in for Assemble v0.6.0. It seems it's using Template(I think it was previously called Engine), which also powers Verb.
should I be calling the plugin "engine-nunjucks", "template-nunjucks", "assemble-plugin-nunjucks", "assemble-nunjucks"?

From looking at your repository, I think engine-nunjucks fits best since you're creating a rendering engine for template. This is similar to engine-handlebars, engine-lodash, engine-less, and engine-assemble that we have already.

Verb, Assemble, Template can weigh in here
Not sure if you noticed, but #doowb is co-creator of all of those projects ;)
It's a good question and one we have started to document with the pending v0.6.0 release coming, but we should probably step on the gas and get these things published.
Short answer
if it's a plugin (like gulp plugins) then assemble-* is a good way to go. Plugins follow gulp convention and style guidelines. Don't go by naming conventions of old pre-v0.6.0 assemble plugins/middleware. We're asking the gods of poor-naming-decisisions to absolve us of those sins so we can move on (and deprecate them). Hopefully we'll get past that
if it's an engine, then use engine-* for naming. Code-wise, engines follow consolidate convention when async, and [engines][1] convention when sync (which is just basically consolidate without the callbacks). Since engines can be published with both sync and async methods, engine-foo is probably always a good bet.
If it's a helper and it's generic, use helper-*. if it requires a specific engine, use the engine in the name: handlebars-helper-*. If it requires assemble, name it assemble-helper-*
If it's a loader, use loader-*. If it's a loader that is specific to assemble, then use assemble-loader-*, or if it can be used by any library that implements Template, then use template-loader-*.
I think the overriding convention is to just err on the side of explicitly naming what the module is associated with, so it's easier to find by other devs in the community. The only exception being actual plugins, since we're trying to stick to gulp convention (instead of doing assemble-plugin-*)

Related

How to use a -Manifest package in Pharo Smalltalk after File-in/Install?

I just upgraded to the newest version of Pharo Smalltalk. Before doing so, I "File-outed" a package from my old version called My-Pharo - a package I use for various configurations and customizations of Pharo itself, most notably a class to put back "Workspace" in the main menu. I then "File-ined/Installed" the file into my new version.
When I checked the SystemBrowser, I had correctly gotten the My-Pharo package, but I'd also picked up a package called My-Pharo-Manifest... I see My-Pharo-Manifest actually is part of my File-Out, and seems to contain the package-comment for My-Pharo .
What is this manifest, what is it's purpose, and how should it be used? Is there something I can/should do to "merge" the manifest (ie. the comment) back into the My-Pharo class? Should I move the content of My-Pharo-Manifest somewhere else? ...Or is my best bet to simply delete the Manifest-package, and re-write the package-comment for My-Pharo?
I'm not a seasoned Pharo developer, I use it just time to time. I'll try to answer your question from the source code. For more detailed answer you would have to get it from the ones that are actually do the development of Pharo.
What is manifest?
Manifest contains package metadata.
what is it's purpose?
The purpose is to make life easier for the SmallLint (Smalltalk Code Critics). It is there for its speedup, because without the manifest the SmallLint would have to check the rule results all the time. Package metadata helps in managing false positives and/or TODOs.
packages: If you check for the where is the #hasPackageNamed: used, you will find out that it is at SmallLintManifestChecker>>manifestBuilderOfPackage:.
methods: if you search for #hasManifestFor: SmallLintManifestChecker>>manifestBuilderOfMethod:
Is there something I can/should do to "merge" the manifest (ie. the
comment) back into the My-Pharo class? Should I move the content of
My-Pharo-Manifest somewhere else?
I would just leave it be. It helps the SmallLint to do its job.

Examples of Semantic Version Names

I have been reading about semver. I really like the general idea. However, when it comes to putting it to practice, I feel like I'm missing some key pieces of information. I'm not sure where the name of a library exists, or what to do with file variants. For instance, is the file name something like [framework]-[semver].min.js? Are there popular JavaScript frameworks that use semver? I don't know of any.
Thank you!
Let me try to explain you.
If you are not developing a library that you like to keep for years to come, don't bother about it.. If you prefer to version every development, read the following.
Suppose you are an architect or developer developing a library that is aimed to be used by hundreds of developers over time, in a distributed manner. You really need to be cautious of what you are doing, what your developers are adding (so interesting features that grabs your attention to push those changes in the currently distributed file). You dont know how do you tell your library users to upgrade. In what scenarios? People followed some sort of versioning, and interestingly, their thoughts all are working fine.
Then why do you need semver ?
It says "There should be a concrete specification for anything for a group of people to follow anything collectively, even though they know it in their minds". With that thought, they made a specification. They have made their observation and clubbed all the best practices in the world about versioning software mainly, and given a single website where they listed them. that is semver.org. Its main principles are :
Imagine you have already released your library with a version "lib.1.0.98", Now follow these rules for subsequent development.
Let your library is bundled and named as xyz and,
Given a version number MAJOR.MINOR.PATCH, (like xyz.MAJOR.MINOR.PATCH), increment the:
1. MAJOR version when you make incompatible API changes
(existing code of users of your library breaks if they adapt this without code changes in their programs),
2. MINOR version when you add functionality in a backwards-compatible manner
(existing code works, and some improvements in performance and features also), and
3. PATCH version when you make backwards-compatible bug fixes.
Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH format.
If you are not a developer or are not in a position to develop a library of a standard, you need not worry at all about semver.
Finally, the famous [d3] library follows this practice.
Semantic Versioning only defines how to name your versions. It does not specify what you will do with your version number afterwards. You can put the version numbers in package names, you can store it in a properties file inside your application, or just publish it in a wiki. All those options are opened to discussion and not part of the problem space addressed by SemVer.
semver is used by npm and bower (and perhaps some other tools) for dependency management. Using semver it is possible to decide which versions of which packages to use if multiple libraries used depend on the same library.
As others have said, semantic versioning is a standard versioning scheme that tells your users which versions of your library should be compatible with each other, and which ones are not.
The idea, is to be able to give your users more confidence that it's safe to upgrade to a newer patch/version, because it's tried, tested, and true to being backwards compatible with the previous version (minor increments). That is, perceptively that's what your telling your users.
As far as tooling goes, I don't do much in javascript, but I typically let my build server handle stamping my assemblies etc with the correct version. I have a static major number I upgrade whenever I make breaking changes, a static minor number I upgrade everytime I add new features, and an auto-incrementing Patch number whenever I checkin bug fixes.
Especially if this is a javascript library you plan to share on a public repository of some kind (nuget, gem, etc) you probably want some for of automated packaging system, and you put the logic in there for specifying your version number (in the package meta data, in the name of the javascript file, which is typically the standard I've seen).
Take a look at sbt which is the Scala Build Tool. In it, we write dependencies like this:
val scalatest = "org.scalatest" %% "core" % "2.1.7" "test"
val jodatime = "org.joda" % "jodatime" % "1.4.5"
Wherein the operator %% means "the current version of Scala that you're building." Packaging things in this language generally create JAR files with the name like this <my project>_<scala version>_<library version>.jar which is quite handy for semantically naming things automagically. The % operator can be interpreted as "don't version this part."
That said, this resulted from the fact that the same library compiled to different Scala versions were not binary compatible with each other. So it was more as a result of, rather than a conscious design choice, the binary incompatibilities.

What is the best way to organize source code of a large Cocoa application in Xcode?

Here is what I'm looking for:
I'd like to separate pieces of functionality into modules or components of some sort to limit visibility of other classes to prevent that each class has access to every other class which over time results in spaghetti code.
In Java & Eclipse, for example, I would use packages and put each package into a separate project with a clearly defined dependency structure.
Things I have considered:
Using separate folders for source files and using Groups in Xcode:
Pros: simple to do, almost no Xcode configuration needed
Cons: no compile-time separation of functionality, i.e. access to everything is only one #import statement away
Using Frameworks:
Pros: Framework code cannot access access classes outside of framework. This enforces encapsulation and keeps things separate
Cons: Code management is cumbersome if you work on multiple Frameworks at the same time. Each Framework is a separate Xcode project with a separate window
Using Plugins:
Pros: Similar to Frameworks, Plugin code can't access code of other plugins. Clean separation at compile-time. Plugin source can be part of the same Xcode project.
Cons: Not sure. This may be the way to go...
Based on your experience, what would you choose to keep things separate while being able to edit all sources in the same project?
Edit:
I'm targeting Mac OS X
I'm really looking for a solution to enforce separation at compile time
By plugins I mean Cocoa bundles (http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/LoadingCode/Concepts/Plugins.html)
I have worked on some good-sized Mac projects (>2M SLOC in my last one in 90 xcodeproj files) and here are my thoughts on managing them:
Avoid dynamic loads like Frameworks, Bundles, or dylibs unless you are actually sharing the binaries between groups. These tend to create more complexity than they solve in my experience. Plus they don't port easily to iOS, which means maintaining multiple approaches. Worst, having lots of dynamic libraries increases the likelihood of including the same symbols twice, leading to all kinds of crazy bugs. This happens when you directly include some "helper" class directly in more than one library. If it includes a global variable, the bugs are awesome as different threads use different instances of the global.
Static libraries are the best choice in many if not most cases. They resolve everything at build time, allowing code stripping in your C/C++ and other optimizations not possible in dynamic libraries. They get rid of "hey, it loads on my system but not the customer's" (when you use the wrong value for the framework path). No need to deal with slides when computing line numbers from crash stacks. They catch duplicate symbols at build time, saving many hours of debugging pain.
Separate major components into separate xcodeproj. Really think about what "major" means here, though. My 90-project product was way too many. Just doing dependency checking can become a very non-trivial exercise. (Xcode 4 can improve this, but I left the project before we ever were able to get Xcode 4 to reliably build it, so I don't know how well it did in the end.)
Separate public from private headers. You can do this with static libs just as well as you can with Frameworks. Put the public headers in a different directory. I recommend each component have its own public include directory for this purpose.
Do not copy headers. Include them directly from the public include directory for the component. Copying headers into a shared tree seems like a great idea until you do it. Then you find that you're editing the copy rather than the real one, or you're editing the real one, but not actually copying it. In any case, it makes development a headache.
Use xcconfig files, not the build pane. The build pane will drive you crazy in these kinds of big projects. Mine tend to have lines like this:
common="../../common"
foo="$(common)/foo"
HEADER_SEARCH_PATHS = $(inherited) $(foo)/include
Within your public header path, include your own bundle name. In the example above, the path to the main header would be common/foo/include/foo/foo.h. The extra level seems a pain, but it's a real win when you import. You then always import like this: #import <foo/foo.h>. Keeps everything very clean. Don't use double-quotes to import public headers. Only use double-quotes to import private headers in your own component.
I haven't decided the best way for Xcode 4, but in Xcode 3, you should always link your own static libraries by adding the project as a subproject and dragging the ".a" target into your link step. Doing it this way ensures that you'll link the one built for the current platform and configuration. My really huge projects haven't been able to convert to Xcode 4 yet, so I don't have a strong opinion yet on the best way there.
Avoid searching for custom libraries (the -L and -l flags at the link step). If you build the library as part of the project, then use the advice above. If you pre-build it, then add the full path in LD_FLAGS. Searching for libraries includes some surprising algorithms and makes the whole thing hard to understand. Never drop a pre-built library into your link step. If you drop a pre-built libssl.a into your link step, it actually adds a -L parameter for the path and then adds -lssl. Under default search rules, even though you show libssl.a in your build pane, you'll actually link to the system libssl.so. Deleting the library will remove the -l but not the -L so you can wind up with bizarre search paths. (I hate the build pane.) Do it this way instead in xcconfig:
LD_FLAGS = "$(openssl)/lib/libssl.a"
If you have stable code that is shared between several projects, and while developing those projects you're never going to mess with this code (and don't want the source code available), then a Framework can be a reasonable approach. If you need plugins to avoid loading large amounts of unnecessary code (and you really won't load that code in most cases), then bundles may be reasonable. But in the majority of cases for application developers, one large executable linked together from static libraries is the best approach IMO. Shared libraries and frameworks only make sense if they're actually shared at runtime.
My suggestion would be:
Use Frameworks. They're the most easily reusable build artifact of the options you list, and the way you describe the structure of what you are trying to achieve sounds very much like creating a set of Frameworks.
Use a separate project for each Framework. You'll never be able to get the compiler to enforce the kind of access restrictions you want if everything is dumped into a single project. And if you can't get the compiler to enforce it, then good luck getting your developers to do so.
Upgrade to XCode4 (if you haven't already). This will allow you to work on multiple projects in a single window (pretty much like how Eclipse does it), without intermingling the projects. This pretty much eliminates the cons you listed under the Frameworks option.
And if you are targeting iOS, I very strongly recommend that you build real frameworks as opposed to the fake ones that you get by using the bundle-hack method, if you aren't building real frameworks already.
I've managed to keep my sanity working on my project which has grown over the past months to fairly large (number of classes) by forcing myself to practice Model-View-Control (MVC) diligently, plus a healthy amount of comments, and the indispensable source control (subversion, then git).
In general, I observe the following:
"Model" Classes that serialize data (doesn't matter from where, and including app's 'state') in an Objective-C 1 class subclassed from NSObject or custom "model" classes that inherits from NSObject. I chose Objective-C 1.0 more for compatibility as it's the lowest common denominator and I didn't want to be stuck in the future writing "model" classes from scratch because of dependency of Objective-C 2.0 features.
View Classes are in XIB with the XIB version set to support the oldest toolchain I need to support (so I can use a previous version Xode 3 in addition to Xcode 4). I tend to start with Apple provided Cocoa Touch API and frameworks to benefit from any optimization/enhancement Apple may introduce as these APIs evolve.
Controller Classes contain usual code that manages display/animation of views (programmatically as well as from XIBs) and data serialization of data from "model" classes.
If I find myself reusing a class a few times, I'd explore refactoring the code and optimizing (measured using Instruments) into what I call "utility" classes, or as protocols.
Hope this helps, and good luck.
This depends largely on your situation and your own specific preferences.
If you're coding "proper" object-oriented classes then you will have a class structure with methods and variables hidden from other classes where necessary. Unless your project is huge and built of hundreds of different distinguishable modules then its probably sufficient to just group classes and resources into folders/groups in XCode and work with it that way.
If you've really got a huuge project with easily distinguishable modules then by all means create a framework. I would suggest though that this would only really be necessary where you are using the same code in different applications, in which case creating a framework/extra project would be a good way to effectively copy code between projects. In practically all other cases it would probably just be overkill and much more complicated than needed.
Your last idea seems to be a mix of the first two. Plugins (as I understand you are describing - tell me if I'm wrong) are just separated classes in the same project? This is probably the best way, and should be done (to an extent) in any case. If you are creating functionality to draw graphs (for example) you should section off a new folder/group and start your classes and functionality within that, only including those classes into your main application where necessary.
Let me put it this way. There's no reason to go over the top... but, even if just for your own sanity - or the maintainability of your code - you should always endeavour to group everything up into descriptive groups/folders.

What's the best approach to incremental compilation when building a DSL using Eclipse?

As suggested by the Eclipse documentation, I have an org.eclipse.core.resources.IncrementalProjectBuilder that compiles each source file and separately I also have a org.eclipse.ui.editors.text.TextEditor that can edit each source file. Each source file is compiled into its own compilation unit, but it can reference types from other (already compiled) source files.
Two tasks for which this is important are:
Compiling (to make sure the types we're using actually exist)
Autocomplete (to look up the type so we can see what properties/methods are present on it)
To accomplish this, I want to store a representation of all the compiled types in memory (referred to below as my "type store").
My question is two fold:
Task one above is performed by the builder and task two by the editor. So that they both have access to this type store, should I create a static store somewhere that they both can have access to, or does Eclipse provide a neater way to deal with this problem? Note that it is eclipse, not me, that instantiates the builders and editors when they are needed.
When opening eclipse, I don't want to have to rebuild the whole project just so I can re-populate my type store. My best solution so far is to persist this data somewhere and then repopulate my store from that (perhaps upon project open). Is this how other incremental compilers typically do this? I believe Java's approach is to use a special parser that efficiently extracts this data from the class files.
Any insights would be really appreciated. This is my first DSL.
This is an interesting question and one that doesn't have a simple solution. I'll try to describe a potential solution and also describe in a little bit more detail how JDT accomplishes incremental compilation.
First, a bit about JDT:
Yes, JDT does read class files for some of its information, but only for libraries that don't have source code. And this information is really only used for editing assistance (content assist, navigation, etc).
JDT computes incremental compilation by keeping track of dependencies between compilation units as they are compiled. This state information is stored on disk and retrieved and updated after each compile.
As a more complete example, let's say that after a full build, JDT determines that A.java depends on B.java, which depends on C.java.
If there is a structural change in C.java (a structural change is a change that can affect outside files (e.g., adding/removing a non-private field or method)), then B.java will be recompiled. A.java will not be recompiled since there was no structural change in B.java.
After this bit of clarification on how JDT works, here are some possible answers to your questions:
Yes. This must be done through statically accessible global objects. JDT does this through the JavaCore and JavaModelManager objects. If you don't want to use global singletons, then you can access to your type store available through your plugin's Bundle activator instance. The e4 project does allow dependency injection, which is probably even better (but is not really a part of the core Eclipse APIs).
I think persisting the information on the file system is your best bet. The only real way to determine incremental compile dependencies is to do a full build, so you need to persist the information somewhere. Again, this is how JDT does it. The information is stored in your workspaces' .metadata directory somewhere in the org.eclipse.core.resources plugin. You can have a look at the org.eclipse.jdt.internal.core.builder.State class to see the implementation.
So, this may not be the answer you are looking for, but I think this is the most promising way to approach your problem.

How to provide specific GWT implementations

Suppose I am working on exposing some of my server-side classes to a GWT application, but certain parts could be done much better using GWT-specific components (like JSNI, for instance).
What are some techniques for doing so without being too hacky?
For instance, I am aware of using a subpackage and using the <super-source/> tag, but this requires the package names to be different, which causes eclipse to complain. The general solution in the community is to then tell eclipse to use that as a source folder, but then eclipse complains about there being two classes with the same name.
Ideally, there would just be a way to keep everything in a single source tree, and actually have different classes which apply the alternate implementations. This would feel like a more OO approach.
I would like to add a suffix to a class like _gwt which accomplishes this automatically, and I know I could write a script to do this kind of transformation, but that is a kludge for sure.
I've been considering using Google's GIN/GUICE libraries for my projects in general, and I think there might be some kind of a solution there, but I am not sure as I have not thoroughly investigated it.
What are some solutions you have tried in the past on GWT projects?
The easiest way to have split implementations is to use super-source code, but only enough to instantiate a uniquely-named instance or dispatch to a different method. Ideally, the super-source implementation is just a few lines long, and not so bad that you can't roll it by hand.
To work around the Eclipse / javac double-mapping and package name issues, the GWT source uses two top-level roots for user code: user/src and user/super. For example, the AutoBeans package has a split-implementation of JSON quoting and evaluation, one for the JVM and one for the browser.
There's really no non-kludgy way to implement super-source, as this is a feature way outside what you can specify in the language. There's nothing that lets you say "use this implementation in this environment" without the use of some external tool.