Windows Phone 8 WCF Synchronous - wcf

I have an app for WP8 and I would like to generate the reference to the services to call it synchronous instead of asynchronous. I need to make sure that one step is completed before start the second step.
Is there any way to do this ?
I've try to generate the methods sync instead of asynchronous but this option is not allowed in VS2013.
Regards

You can achieve, what you have mentioned, by using async/await keywords too, what you have to do is await the first method before calling the next method. That's it (provided Step1 is properly implemented - you got your all the required stuff done for the next step to be taken).
Suppose :-
Step1 method :-
public async Task Step1()
{
...
}
Step2 method :-
public async Task Step2()
{
...
}
Now you want to call the Step2 only after completing of Step1.So, Just call them in order by awaiting the Step1 method(Task)
Public async Task/Void RunStep2AfterStep1()
{
await Step1();
// you will only get here only when you Step1() is completed successfully.
await Step2();
}
The below
Async/Await helper Image give you proper flow of async/await.
Note:- Don't try to avoid the Async/Await they are much more powerful than you think, and if you think your requirement can't be fulfilled without them. Then, I think, you need to explore much.
Thanks :)

Related

ASP.NET Core Endpoint of type Task<T> returns fine without any await...how?

Updated below...
So this is a random question that came about from a discussion over what I consider the over usage of await in projects at work...
Not sure why I never tried it until now, other than the fact that it's weird and random, but the fact it does work just makes me wonder...how?
The .Result usage was only used to get the responseMessage. I know that is blocking and no bueno and it is for demo purposes only...
So this endpoint works fine...nothing is awaited
[HttpGet("kitteh")]
public Task<string> GetCatFact()
{
var client = new HttpClient();
var res = client.GetAsync("https://catfact.ninja/fact").Result;
return res.Content.ReadAsStringAsync();
}
There's obviously something in the default ASP.NET pipleline that ultimately unwraps the task in order to return the result...but where...or how?
Is this "less efficient" than awaiting in the endpoint itself as the magic taking place behind the scenes is ultimately just blocking to get the result of the returned task?
Updated
So, I am still skeptical and don't think the answer is as easy as "yes it is blocking" or "not it is not blocking" unless there's some legit proof or something to indicate one way or the other. I tried digging through the code myself, and I still don't have a solid answer but...I do know more than I did before...
I simplified the endpoints I have been testing this with...
[HttpGet("taskstring")]
public Task<string> TaskString()
{
return Task.FromResult("Where does this block?");
}
[HttpGet("asyncstring")]
public async Task<string> AsyncString()
{
return await Task.FromResult("This definitely doesn't block");
}
I stepped through a bunch of code and ultimately landed on ObjectMethodExecutor and AwaitableObjectResultExecutor which sparked some interest.
What appears to happen for both the endpoint versions above is the same or nearly the same, at least the execution of these two endpoints and the code covered below. There's a boatload that goes on during this and even though the rider debugger is great, it's not possible to see a lot of the values while debugging due to "Evaluation is not allowed: The thread is not at a GC-safe point".
When the endpoint is called but prior to the endpoint beginning execution...
ObjectMethodExecutor.ctor is called
This does a lot of inspection of the endpoint to determine a bunch of things
One of the checks is to is determine if the method is "async" and it ultimately calls AwaitableInfo.IsTypeAwaitable to check for the required methods/properties and interfaces to ensure it is
If it is, which in the case of returning Task of string it is, makes sense given the above info
ObjectMethodExecutor.GetExecutorAsync() is called
AwaitableObjectResultExecutor.Execute is then called
this type inherits ActionMethodExecutor which overrides the Execute method
executor.ExecuteAsync(executor type of ObjectMethodExecutorAwaitable) is then called, and awaited
this returns a result of type object, boxing yeah I know
The endpoint then actually executes and returns to AwaitableObjectResultExecutor.Execute
the result is then passed to ConvertToActionResult along with the return type, the T of Task of T and the mapper implementation
the mapped ActionResult is then returned
So...I'm still not certain 100% either way but there is a lot of effort put into inspecting the endpoint that is being called and determining if it's async or not, which would make it seem logical to think this is an attempt to avoid something...maybe blocking?
So...does it block...maybe? Seeing that there is an await from the indirect caller of the endpoint, I'd lean towards, no...but it seems really difficult to say still.
What I do now know is...
It definitely does await the endpoint call, albeit indirectly
It converts the Task of string return type to an IActionResult
An async and task only version seem to follow the exact some flow shown above
A non async version does not
So, based on all of that...#Phil's answer seems to be pretty spot on with what I found...
"The framework supports asynchronous controller actions. In order to do so, it would need to inspect the return value of your methods. If the method returns a Task, it will ultimately await on the result before responding.
Even if your action itself does all the awaiting, it still has to return a Task so the caller will still wait (the alternative being some ugly blocking code)."
Thanks to all for participating in an extremely random question that doesn't hold much value to truly understand
Your assumption here is basically correct...
There's obviously something in the default ASP.NET pipleline that ultimately unwraps the task in order to return the result
The framework supports asynchronous controller actions. In order to do so, it would need to inspect the return value of your methods. If the method returns a Task, it will ultimately await on the result before responding.
Even if your action itself does all the awaiting, it still has to return a Task so the caller will still wait (the alternative being some ugly blocking code).
As has been pointed out in some other posts, there are some performance improvements to be had by not awaiting a returned Task so I would write your action as
public async Task<string> GetCatFact()
{
var client = new HttpClient();
var res = await client.GetAsync("https://catfact.ninja/fact");
return res.Content.ReadAsStringAsync(); // no await
}
Your controller handles waiting for the remote response but delegates waiting for the content stream to the caller.
There's obviously something in the default ASP.NET pipleline that ultimately unwraps the task in order to return the result...but where...or how?
ASP.NET asynchronously waits for your task to complete, and then it sends the HTTP response based on the result of the task. It's logically similar to await: an asynchronous wait.
Is this "less efficient" than awaiting in the endpoint itself as the magic taking place behind the scenes is ultimately just blocking to get the result of the returned task?
Yes. It is less efficient to block.
ASP.NET doesn't block; it asynchronously waits. Blocking ties up a thread. So when the code calls .Result, it will be using a thread just to wait for that HttpClient call to complete.
The proper solution is to keep async and await:
[HttpGet("kitteh")]
public async Task<string> GetCatFact()
{
var client = new HttpClient();
var res = await client.GetAsync("https://catfact.ninja/fact");
return await res.Content.ReadAsStringAsync();
}
This way, while the GetAsync is in progress, the thread is yielded back to the ASP.NET runtime and is available for handling other requests, instead of being blocked waiting for the GetAsync to complete.
More information: Task<string> is part of the method signature. ASP.NET has special understanding of the Task<T> type and knows to asynchronously wait for it. async is not part of the method signature. ASP.NET knows whether your method returns Task, but it has no idea whether it's async (and doesn't care). So, in some situations, it's OK to elide the keywords (as described on my blog, but only when the method implementation is trivial. If there's any logic in the method, keep the async and await.

ViewComponent InvokeAsync method and non async operation

In asp.net core ViewComponent we have to implement logic in an InvokeAsync method that returns an IViewComponentResult. However I do not have any async logic to perform inside the invoke method. So based on SO post here I have removed the async qualifier and just return Task.FromResult
public Task<IViewComponentResult> InvokeAsync(MyBaseModel model)
{
var name = MyFactory.GetViewComponent(model.DocumentTypeID);
return Task.FromResult<IViewComponentResult>(View(name, model));
}
and then in View ( since I don't have async I am not using await here)
#Component.InvokeAsync("MyViewComponent", new { model = Model })
However view renders this:
System.Threading.Tasks.Task1[Microsoft.AspNetCore.Html.IHtmlContent]`
You must await the Component.InvokeAsync. The fact that your method doesn't do anything async doesn't matter. The method itself is async.
However, that's a bit of an oversimplification. Frankly, the ease of the async/await keywords belies how complicated all this actually is. To be accurate, instead of calling these types of methods "async", it's more appropriate to discuss them as "task-returning". A task is essentially a handle for some operation. That operation could be async or sync. It's most closely associated with async, simply because wrapping sync operations in a task would be pretty pointless in most scenarios. However, the point is that just because something must return a task does not also imply that it must be async.
All async does is allow the possibility of a thread switch. In scenarios where there's some operation, typically involving I/O, that would cause the working thread to be idle for some period of time, the thread becomes available to be used for other work, and the original work may complete on a different thread. Notice the use of the passive language here. Async operations can involve no thread switching; the task could complete on the same thread, as if it was sync. The task could even complete immediately, if the underlying operation has already completed.
In your scenario here, you're not doing any async work, which is fine. However, the method definition requires Task<T> as the return, so you must use Task.FromResult to return your actual result. That's all pretty standard stuff, and seems to be understood already by you. What you're missing, I think, is that you're thinking that since you're not actually doing any asynchronous work, it would be wrong to utilize await. There's nothing magical about the await keyword; it basically just means hold here until the task completes. If there's no async work to be done, as is the case here, the sync code will just run as normal and yield back to the calling code when done, However, as a convenience, await also performs one other vital function: it unwraps the task.
That is where your problem lies. Since you're not awaiting, the task itself is being returned into the Razor view processing pipeline. It doesn't know what to do with that, so it does what it does by default and just calls ToString on it, hence the text you're getting back. Unwrapped, you'd just have IViewComponentResult and Razor does know what to do with that.
If your logic performed inside the invoke method is synchronous, i.e., you don't have any await, you have 2 options:
You can define invoke method without async keyword and it should return Task.FromResult<T>
Use public IViewComponentResult Invoke() instead.
I think the async keyword enables the await keyword and that's pretty much about it. Nothing special about async keyword.
On the main thread where your view is getting rendered, since the tag helper method
to invoke a view component Component.InvokeAsync() is awaitable, you do need to put await keyword there to start the task. await examines the view component rendering to see if it has already completed. If it has, then the main thread just keeps going. Otherwise the main thread will tell the ViewComponent to run.

How do you register a behavior to execute after the "Handle" method in NServiceBus 6?

I have an Endpoint with a Handle method. I would like to do something immediately before and immediately following Handle. I was able to get the step working before by imolementing LogCommandEntryBehavior : Behavior<IIncomingLogicalMessageContext>. What needs to be implemented to happen immediately following Handle?
In NServiceBus Version 6, the pipeline consists of a series of Stages, each one nested inside the previous like a set of Russian Dolls. For an incoming message, the stages are (in order):
ITransportReceiveContext,
IIncomingPhysicalMessageContext,
IIncomingLogicalMessageContext, and
IInvokeHandlerContext
When you create a behavior within a stage, you get passed a delegate called next(). When you call next() you execute the next behavior in the pipeline (which may move the pipeline to the next stage). The call to next() returns a Task which indicates when this inner part of the pipeline is done.
That gives you the opportunity to invoke your code before moving on to the next stage, and invoke more code after the next stage has been completed like this:
public class LogCommandEntryBehavior : Behavior<IIncomingLogicalMessageContext>
{
public override async Task Invoke(IIncomingLogicalMessageContext context, Func<Task> next)
{
// custom logic before calling the next step in the pipeline.
await next().ConfigureAwait(false);
// custom logic after all inner steps in the pipeline completed.
}
}
If you want to log information about the handling of a message, I recommend looking at the IInvokeHandlerContext stage. It contains information about how the message was handled and will be called once for every handler that is invoked (in cases where you have multiple). If you don't need info at that level then IIncomingLogicalMessageContext is probably all you need.
You can read more about the Version 6 pipeline in the Particular Docs site:
Steps, Stages and Connectors
Manipulate Pipeline with Behaviors

Unit testing NServiceBus handler's handling of reply to its send

I have a handler which, when it handles some event, sends a request and, depending on the reply, might publish an alert. I'm trying to test this using the NServiceBus Testing framework, but can't quite see how to pretend the bus is replying. I've seen examples of how to test send (using Test.Handler(...).ExpectSend...) and how to test reply in the other handler that is doing the reply (using Test.Handler(...).ExpectReply), but nothing about stubbing the reply to test the handling of the reply.
Here's what my handler's Handle method looks like:
public void Handle(SomeEvent #event)
{
bus.Send<SomeRequest>(request => { request.Stuff = #event.Stuff })
.Register<SomeReply>(reply => { if (reply.OhNo) bus.Publish(new SomeAlert("augh!")); });
}
And here's what the test looks like so far:
Test.Handler(bus => new MyHandler(bus, serviceMock.Object)).
ExpectSend(verifyRequest).
// thought maybe something here like .StubReply(someReply) or something?
ExpectPublish(verifyAlert).
OnMessage(#event, "xyz");
Thanks for any advice!
Message handlers are single call objects with no state, so the call to .Register won't work as you expect. You could move the reply handling logic to a separate message handler (as it doesn't appear like you have any behavior that depends on remembering something from the request) or you could use a saga if you need a more involved orchestration.
Incidentally, you wouldn't use .Register with your sagas either - instead you'd have a separate Handle method for the response. They also have a more complete testing API, though I wouldn't consider that an argument for using them in this case.
Start with a separate handler for your response message type.

how to cancel WCF service call?

I have a WCF function that is executing long time, so I call the function in UI with backgraundworker... I want to give a feature to cancel the execution, so I abort IComunicationObject, the problem is that Service execution is not stoping, Is there any way to stop Service execution in this case?
You may not need a BackgroundWorker. You can either make the operation IsOneWay, or implement the asynchronous pattern. To prevent threading issues, consider using the SynchronizationContext. Programming WCF Services does a great job at explaining these.
Make a CancelOperation() method which sets some static ManualResetEvent in your service. Check this event in your Operation method frequently. Or it can be CancelOperation(Guid operationId) if your service can process multiple operation calls concurrently.
One important thing to understand if you're using the Async calls is that there's still no way to cancel a request and prevent a response coming back from the service once it's started. It's up to your UI to be intelligent in handling responses to avoid race conditions. Fortunately there's a simple way of doing this.
This example is for searching orders - driven by a UI. Lets assume it may take a few seconds to return results and the user is running two searches back to back.
Therefore if your user runs two searches and the first search returns after the second - you need to make sure you don't display the results of the first search.
private int _searchRequestID = 0; // need one for each WCF method you call
// Call our service...
// The call is made using the overload to the Async method with 'UserToken'.
// When the call completes we check the ID matches to avoid a nasty
// race condition
_searchRequestID = _searchRequestID++;
client.SearchOrdersCompleted += (s, e) =>
{
if (_searchRequestID != (int)e.UserState))
{
return; // avoid nasty race condition
}
// ok to handle response ...
}
client.SearchOrdersAsync(searchMessage, _searchRequestID);