I have some difficulty in understanding the terminology of NoSQL, RDBMS (where they belong, category etc).
From my understanding, you have a 'Database Management System', which has many types such as the relational and ER model.
A RDBMS is based on the relational model.
Now you have NoSQL, which is a type of Database management system, which also has many types (key/value, document store etc.)
So basically, a DBMS and NoSQL are, term wise, on the same level but have different data models?
Am I correct?
The Wikipedia article on NoSQL is very appropriate, please read it.
The short answer is that a relational database management system is any system that manages data by...relations. NoSQL is far less descriptive. It's a host of very different approaches for managing data. They really don't have much in common with one another other than that they're not RDBMS. To further confuse things, NoSQL may actually use SQL, hence why people now call it "Not Only SQL" instead of actually "No SQL".
Related
Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 9 years ago.
Improve this question
I've been hearing things about NoSQL and that it may eventually become the replacement for SQL DB storage methods due to the fact that DB interaction is often a bottle neck for speed on the web.
So I just have a few questions:
What exactly is it?
How does it work?
Why would it be better than using a SQL Database? And how much better is it?
Is the technology too new to start implementing yet or is it worth taking a look into?
There is no such thing as NoSQL!
NoSQL is a buzzword.
For decades, when people were talking about databases, they meant relational databases. And when people were talking about relational databases, they meant those you control with Edgar F. Codd's Structured Query Language. Storing data in some other way? Madness! Anything else is just flatfiles.
But in the past few years, people started to question this dogma. People wondered if tables with rows and columns are really the only way to represent data. People started thinking and coding, and came up with many new concepts how data could be organized. And they started to create new database systems designed for these new ways of working with data.
The philosophies of all these databases were different. But one thing all these databases had in common, was that the Structured Query Language was no longer a good fit for using them. So each database replaced SQL with their own query languages. And so the term NoSQL was born, as a label for all database technologies which defy the classic relational database model.
So what do NoSQL databases have in common?
Actually, not much.
You often hear phrases like:
NoSQL is scalable!
NoSQL is for BigData!
NoSQL violates ACID!
NoSQL is a glorified key/value store!
Is that true? Well, some of these statements might be true for some databases commonly called NoSQL, but every single one is also false for at least one other. Actually, the only thing NoSQL databases have in common, is that they are databases which do not use SQL. That's it. The only thing that defines them is what sets them apart from each other.
So what sets NoSQL databases apart?
So we made clear that all those databases commonly referred to as NoSQL are too different to evaluate them together. Each of them needs to be evaluated separately to decide if they are a good fit to solve a specific problem. But where do we begin? Thankfully, NoSQL databases can be grouped into certain categories, which are suitable for different use-cases:
Document-oriented
Examples: MongoDB, CouchDB
Strengths: Heterogenous data, working object-oriented, agile development
Their advantage is that they do not require a consistent data structure. They are useful when your requirements and thus your database layout changes constantly, or when you are dealing with datasets which belong together but still look very differently. When you have a lot of tables with two columns called "key" and "value", then these might be worth looking into.
Graph databases
Examples: Neo4j, GiraffeDB.
Strengths: Data Mining
While most NoSQL databases abandon the concept of managing data relations, these databases embrace it even more than those so-called relational databases.
Their focus is at defining data by its relation to other data. When you have a lot of tables with primary keys which are the primary keys of two other tables (and maybe some data describing the relation between them), then these might be something for you.
Key-Value Stores
Examples: Redis, Cassandra, MemcacheDB
Strengths: Fast lookup of values by known keys
They are very simplistic, but that makes them fast and easy to use. When you have no need for stored procedures, constraints, triggers and all those advanced database features and you just want fast storage and retrieval of your data, then those are for you.
Unfortunately they assume that you know exactly what you are looking for. You need the profile of User157641? No problem, will only take microseconds. But what when you want the names of all users who are aged between 16 and 24, have "waffles" as their favorite food and logged in in the last 24 hours? Tough luck. When you don't have a definite and unique key for a specific result, you can't get it out of your K-V store that easily.
Is SQL obsolete?
Some NoSQL proponents claim that their favorite NoSQL database is the new way of doing things, and SQL is a thing of the past.
Are they right?
No, of course they aren't. While there are problems SQL isn't suitable for, it still got its strengths. Lots of data models are simply best represented as a collection of tables which reference each other. Especially because most database programmers were trained for decades to think of data in a relational way, and trying to press this mindset onto a new technology which wasn't made for it rarely ends well.
NoSQL databases aren't a replacement for SQL - they are an alternative.
Most software ecosystems around the different NoSQL databases aren't as mature yet. While there are advances, you still haven't got supplemental tools which are as mature and powerful as those available for popular SQL databases.
Also, there is much more know-how for SQL around. Generations of computer scientists have spent decades of their careers into research focusing on relational databases, and it shows: The literature written about SQL databases and relational data modelling, both practical and theoretical, could fill multiple libraries full of books. How to build a relational database for your data is a topic so well-researched it's hard to find a corner case where there isn't a generally accepted by-the-book best practice.
Most NoSQL databases, on the other hand, are still in their infancy. We are still figuring out the best way to use them.
What exactly is it?
On one hand, a specific system, but it has also become a generic word for a variety of new data storage backends that do not follow the relational DB model.
How does it work?
Each of the systems labelled with the generic name works differently, but the basic idea is to offer better scalability and performance by using DB models that don't support all the functionality of a generic RDBMS, but still enough functionality to be useful. In a way it's like MySQL, which at one time lacked support for transactions but, exactly because of that, managed to outperform other DB systems. If you could write your app in a way that didn't require transactions, it was great.
Why would it be better than using a SQL Database? And how much better is it?
It would be better when your site needs to scale so massively that the best RDBMS running on the best hardware you can afford and optimized as much as possible simply can't keep up with the load. How much better it is depends on the specific use case (lots of update activity combined with lots of joins is very hard on "traditional" RDBMSs) - could well be a factor of 1000 in extreme cases.
Is the technology too new to start implementing yet or is it worth taking a look into?
Depends mainly on what you're trying to achieve. It's certainly mature enough to use. But few applications really need to scale that massively. For most, a traditional RDBMS is sufficient. However, with internet usage becoming more ubiquitous all the time, it's quite likely that applications that do will become more common (though probably not dominant).
Since someone said that my previous post was off-topic, I'll try to compensate :-) NoSQL is not, and never was, intended to be a replacement for more mainstream SQL databases, but a couple of words are in order to get things in the right perspective.
At the very heart of the NoSQL philosophy lies the consideration that, possibly for commercial and portability reasons, SQL engines tend to disregard the tremendous power of the UNIX operating system and its derivatives.
With a filesystem-based database, you can take immediate advantage of the ever-increasing capabilities and power of the underlying operating system, which have been steadily increasing for many years now in accordance with Moore's law. With this approach, many operating-system commands become automatically also "database operators" (think of "ls" "sort", "find" and the other countless UNIX shell utilities).
With this in mind, and a bit of creativity, you can indeed devise a filesystem-based database that is able to overcome the limitations of many common SQL engines, at least for specific usage patterns, which is the whole point behind NoSQL's philosophy, the way I see it.
I run hundreds of web sites and they all use NoSQL to a greater or lesser extent. In fact, they do not host huge amounts of data, but even if some of them did I could probably think of a creative use of NoSQL and the filesystem to overcome any bottlenecks. Something that would likely be more difficult with traditional SQL "jails". I urge you to google for "unix", "manis" and "shaffer" to understand what I mean.
If I recall correctly, it refers to types of databases that don't necessarily follow the relational form. Document databases come to mind, databases without a specific structure, and which don't use SQL as a specific query language.
It's generally better suited to web applications that rely on performance of the database, and don't need more advanced features of Relation Database Engines. For example, a Key->Value store providing a simple query by id interface might be 10-100x faster than the corresponding SQL server implementation, with a lower developer maintenance cost.
One example is this paper for an OLTP Tuple Store, which sacrificed transactions for single threaded processing (no concurrency problem because no concurrency allowed), and kept all data in memory; achieving 10-100x better performance as compared to a similar RDBMS driven system. Basically, it's moving away from the 'One Size Fits All' view of SQL and database systems.
In practice, NoSQL is a database system which supports fast access to large binary objects (docs, jpgs etc) using a key based access strategy. This is a departure from the traditional SQL access which is only good enough for alphanumeric values. Not only the internal storage and access strategy but also the syntax and limitations on the display format restricts the traditional SQL. BLOB implementations of traditional relational databases too suffer from these restrictions.
Behind the scene it is an indirect admission of the failure of the SQL model to support any form of OLTP or support for new dataformats. "Support" means not just store but full access capabilities - programmatic and querywise using the standard model.
Relational enthusiasts were quick to modify the defnition of NoSQL from Not-SQL to Not-Only-SQL to keep SQL still in the picture! This is not good especially when we see that most Java programs today resort to ORM mapping of the underlying relational model. A new concept must have a clearcut definition. Else it will end up like SOA.
The basis of the NoSQL systems lies in the random key - value pair. But this is not new. Traditional database systems like IMS and IDMS did support hashed ramdom keys (without making use of any index) and they still do. In fact IDMS already has a keyword NONSQL where they support SQL access to their older network database which they termed as NONSQL.
It's like Jacuzzi: both a brand and a generic name. It's not just a specific technology, but rather a specific type of technology, in this case referring to large-scale (often sparse) "databases" like Google's BigTable or CouchDB.
NoSQL the actual program appears to be a relational database implemented in awk using flat files on the backend. Though they profess, "NoSQL essentially has no arbitrary limits, and can work where other products can't. For example there is no limit on data field size, the number of columns, or file size" , I don't think it is the large scale database of the future.
As Joel says, massively scalable databases like BigTable or HBase, are much more interesting. GQL is the query language associated with BigTable and App Engine. It's largely SQL tweaked to avoid features Google considers bottle-necks (like joins). However, I haven't heard this referred to as "NoSQL" before.
NoSQL is a database system which doesn't use string based SQL queries to fetch data.
Instead you build queries using an API they will provide, for example Amazon DynamoDB is a good example of a NoSQL database.
NoSQL databases are better for large applications where scalability is important.
Does NoSQL mean non-relational database?
Yes, NoSQL is different from RDBMS and OLAP. It uses looser consistency models than traditional relational databases.
Consistency models are used in distributed systems like distributed shared memory systems or distributed data store.
How it works internally?
NoSQL database systems are often highly optimized for retrieval and appending operations and often offer little functionality beyond record storage (e.g. key-value stores). The reduced run-time flexibility compared to full SQL systems is compensated by marked gains in scalability and performance for certain data models.
It can work on Structured and Unstructured Data. It uses Collections instead of Tables
How do you query such "database"?
Watch SQL vs NoSQL: Battle of the Backends; it explains it all.
In our web project we decided to use NoSQL, but are unsure of which NoSQL solution to use, and which languages have full support for NoSQL.
Our priorities are: availability of tutorials and support, and ease of implementation and maintenance. And we want to save the data which is from client side into both relational database (in MySql for back up and other purpose) and NoSQL db. Is it possible at the same time?
The different NoSQL solutions differ between each other much more than traditional SQL databases differ. For example there are simple eventually consistent key-value data-stores like Cassandra and other more feature-rich document-stores like MongoDB.
However, you shouldn't blindly go for the most feature rich solution, because in that case, you might as well use a relational database. SQL comes with all the features, guarantees, tutorials, documentation, ease of implementation, etc, that you can ever require. NoSQL is usually a trade-off between some of those things (or all of them), and ease of horizontal scalability.
You should research the different solutions and choose the solution that fits best your application requirements. Remember to keep relational databases in consideration, because SQL perfectly fits the priorities you listed.
I haven't been confronted with this yet, but this is what i think (very superficial and simplistic imho)
If you have a key value kind of storage and all you accesses are key lookups use the NOSQL solutions.
If you want lookups based on values (and subvalues) or have something more complicated like joins you would go for a relational solution. Transactions = relational (am not too sure if nosql solutions support that notion yet)
It also looks like NOSQL = denormalized (SQL) (i may be terribly mistaken here)
In general, any principles/guidelines/thumb rules to decide chosing the data model for your application.
There are various factors which one may use to select a DB implementation, some of them are:
Cost : NoSQL DBs lean more towards the open source , cheaper side
Scalability : NoSQL can scale better with cheaper hardware
If you have too many joins you should go for a traditional RDBMS
Consistency guarantees can vary based on the solution used w.r.t NoSQL
You can also check out the following podcast : "Episode 165: NoSQL and MongoDB with Dwight Merriman" on SE Radio.
A document store like MongoDB can do a lot more than just the storing of key-value-pairs. MongoDB has rich index and search possibilities. You can do lookups on values (and subvalues) with MongoDB quite easily.
In a document store you can store 1:n relations in the same document. That means that there is less need to do joins. I don't say "no need to do joins" but I say "less need to do joins".
NOSQL is not a particular data model or paradigm for data access. It is used to refer to any number of non-SQL database technologies, typically those designed for distributed database applications.
Denormalization is generally a relational database term. It has nothing to do with NOSQL databases, most or all of which are not relational.
Recently I have read a lot about different NoSQL databases and how they are being effectively deployed by some major websites out there. I'm starting a project in which I think the schema-free nature of a database such as MongoDB would be tremendously useful. Everything I have read though seems to indicate that the main advantage of a NoSQL database is scalability. Is choosing a NoSQL database for the schema-free design just as legitimate a design decision as that of scalability?
Yes, sometimes RDBMS are not the best solution, although there are ways to accomodate user defined fields (see XML Datatype, EAV design pattern, or just have spare generic columns) sometimes a schema free database is a good choice.
However, you need to nail down your requirements before choosing to go with a document database, as you will loose a lot of the power you may be used to with the relational model
eg...
If you would otherwise have multiple tables in your RDBMS database, you will need to research the features MongoDB affords you to accomodate these needs.
If you will need to query the data in specific ways, again you need to research what MongoDB offers you.
I wouldnt think of NoSQL as replacement for RDBMS, rather a slightly different tool that brings its own sets of advantages and disadvantages making it more suitable for some projects than others.
(Both databases may be used in some circumstances. Also if you decide to go down the route of possibly using MongoDB, once you have researched the websites out there and have more specific questions, you can visit Freenode IRC #mongodb channel)
There are a lot of other conditions that I've been hearing about with non-relational systems vs relational. I prefer this terminology over sql/no-sql as I personally think it describes the differences better, and several of the "no-sql" servers have sql add-ons, so anyway.... what sort of concurrency pattern or tranaction isolation is required in your system. One of the purported differences between rel and non-rel dbs is the "consistent-always", "consistent-mostly" or "consistent-eventually". Relation dbs by default usually fall into the "consistent-mostly" category and with some work, and a whole lot of locking and race conditions, ;) can be "consistent-always" so everyone is always looking at the most correct representation of a given piece of data. Most of what I've read/heard about non-rel dbs is that they are mainly "consistent-eventually". By this it means that there may be many instances of our data floating around, so user "A" may see that we have 92 widgets in inventory, whereas user "B" may see 79, and they may not get reconciled until someone actually goes to pull stuff from the warehouse. Another issue is mutability of data, how often does it need to be updated? The particular non-rel db's I've been exposed to have more overhead for updates, some of them having to regenerate the entire dataset to incorporate any updates.
Now mind, I think non-rel/nosql are great tools if they really match your use case. I've got several I'm looking into now for projects I've got. But you've got to look at all the trade offs when making the decision, otherwise it just turns into more resume driven development.
I don't think you should choose NoSQL datastore for its schema free design. Schema free design always existed in RDBMS via XML and some databases have good XML support. It is a lot easier to deal with a database than a NoSQL datastore. Scalability and big data should be the primary drivers to choose a NoSQL datastore otherwise the tradeoff of ACID and SQL is a lot to switch to NoSQL.
the most important things should be noticed to distinguish between No-SQL and SQL
which is :
NO-SQL useful when data base scales in a huge manner like social network
for example :
Stack Overflow: each question has multiple answers and not imaginary an answer without question, so No-SQL will ensure that each question include it's answers
as a result when needing getting answers of a question we can bring all answers without joining.Because join is the most expensive query in related database
thanks alot
what raised this issue that if you have a large server farm and need to manage the distribution of your data and load balancing which is more difficult and harder to implement using RDBMS and requires high IT skills to design, plan and deploy for your solution (and still performance is less).
but if you have only 3 or 4 servers with small project. I don't think you have an issue about it. NoSQL database is usually considered in large server farms not small number of servers
in this post Stack Overflow Architecture i read about something called nosql, i didn't understand what it means, and i tried to search on google but seams that i can't get exactly whats it.
Can anyone explain what nosql means in simple words?
If you've ever worked with a database, you've probably worked with a relational database. Examples would be an Access database, SQL Server, or MySQL. When you think about tables in these kinds of databases, you generally think of a grid, like in Excel. You have to name each column of your database table, and you have to specify whether all the values in that column are integers, strings, etc. Finally, when you want to look up information in that table, you have to use a language called SQL.
A new trend is forming around non-relational databases, that is, databases that do not fall into a neat grid. You don't have to specify which things are integers and strings and booleans, etc. These types of databases are more flexible, but they don't use SQL, because they are not structured that way.
Put simply, that is why they are "NoSQL" databases.
The advantage of using a NoSQL database is that you don't have to know exactly what your data will look like ahead of time. Perhaps you have a Contacts table, but you don't know what kind of information you'll want to store about each contact. In a relational database, you need to make columns like "Name" and "Address". If you find out later on that you need a phone number, you have to add a column for that. There's no need for this kind of planning/structuring in a NoSQL database. There are also potential scaling advantages, but that is a bit controversial, so I won't make any claims there.
Disadvantages of NoSQL databases is really the lack of SQL. SQL is simple and ubiquitous. SQL allows you to slice and dice your data easier to get aggregate results, whereas it's a bit more complicated in NoSQL databases (you'll probably use things like MapReduce, for which there is a bit of a learning curve).
From the NoSQL Homepage
NoSQL is a fast, portable, relational database management system without arbitrary limits, (other than memory and processor speed) that runs under, and interacts with, the UNIX 1 Operating System. It uses the "Operator-Stream Paradigm" described in "Unix Review", March, 1991, page 24, entitled "A 4GL Language". There are a number of "operators" that each perform a unique function on the data. The "stream" is supplied by the UNIX Input/Output redirection mechanism. Therefore each operator processes some data and then passes it along to the next operator via the UNIX pipe function. This is very efficient as UNIX pipes are implemented in memory. NoSQL is compliant with the "Relational Model".
I would also see this answer on Stackoverflow.
Put simply, it means not using a relational database for data storage.
Here's a relevant article: http://www.computerworld.com/s/article/9135086/No_to_SQL_Anti_database_movement_gains_steam_
NoSql is the new database philosophy which talks about all the shortcomings of the relational database design, particularly the problems they have in scaling up for today's demanding web environments.
NoSql is quickly evolving into a movement with new tools, software and formats coming up as alternative to SQL.
RDBMS is as ubiquitous as OOP and while both of these design methodologies solve some problems wonderfully, they don't solve all.
So think of NoSql as the functional programmin of the database world.
Was this simple enough?
NoSQL is the idea that SQL-type databases don't satisfy the demands/requirements of a heavily-used database that requires transactions be reliable and failsafe (or close to it). This ties into the ideas of ACID and CAP, both things worth looking into but not something to lose sleep over unless you run a really popular site that is transaction-heavy (ie Amazon or Ebay). To get a great start on these subjects, I suggest:
http://www.eflorenzano.com/blog/post/my-thoughts-nosql/
and
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
Something everyone considering a "nosql" approach should consider:
(I shan't risk putting the image into this post as it contains a curse word, and I don't want offensive flags. So clicker beware -- there's an f-word in there. Only click if you have a sense of humor.)
http://browsertoolkit.com/fault-tolerance.png
Found this nice article about no-sql
and this as well:
NoSQL, Yes Search