Repository OO Design - Multiple Specifications - oop

I have a pretty standard repository interface:
public interface IRepository<TDomainEntity>
where TDomainEntity : DomainEntity, IAggregateRoot
{
TDomainEntity Find(Guid id);
void Add(TDomainEntity entity);
void Update(TDomainEntity entity);
}
We can use various infrastructure implementations in order to provide default functionality (e.g. Entity Framework, DocumentDb, Table Storage, etc). This is what the Entity Framework implementation looks like (without any actual EF code, for simplicity sake):
public abstract class EntityFrameworkRepository<TDomainEntity, TDataEntity> : IRepository<TDomainEntity>
where TDomainEntity : DomainEntity, IAggregateRoot
where TDataEntity : class, IDataEntity
{
protected IEntityMapper<TDomainEntity, TDataEntity> EntityMapper { get; private set; }
public TDomainEntity Find(Guid id)
{
// Find, map and return entity using Entity Framework
}
public void Add(TDomainEntity item)
{
var entity = EntityMapper.CreateFrom(item);
// Insert entity using Entity Framework
}
public void Update(TDomainEntity item)
{
var entity = EntityMapper.CreateFrom(item);
// Update entity using Entity Framework
}
}
There is a mapping between the TDomainEntity domain entity (aggregate) and the TDataEntity Entity Framework data entity (database table). I will not go into detail as to why there are separate domain and data entities. This is a philosophy of Domain Driven Design (read about aggregates). What's important to understand here is that the repository will only ever expose the domain entity.
To make a new repository for, let's say, "users", I could define the interface like this:
public interface IUserRepository : IRepository<User>
{
// I can add more methods over and above those in IRepository
}
And then use the Entity Framework implementation to provide the basic Find, Add and Update functionality for the aggregate:
public class UserRepository : EntityFrameworkRepository<Stop, StopEntity>, IUserRepository
{
// I can implement more methods over and above those in IUserRepository
}
The above solution has worked great. But now we want to implement deletion functionality. I have proposed the following interface (which is an IRepository):
public interface IDeleteableRepository<TDomainEntity>
: IRepository<TDomainEntity>
{
void Delete(TDomainEntity item);
}
The Entity Framework implementation class would now look something like this:
public abstract class EntityFrameworkRepository<TDomainEntity, TDataEntity> : IDeleteableRepository<TDomainEntity>
where TDomainEntity : DomainEntity, IAggregateRoot
where TDataEntity : class, IDataEntity, IDeleteableDataEntity
{
protected IEntityMapper<TDomainEntity, TDataEntity> EntityMapper { get; private set; }
// Find(), Add() and Update() ...
public void Delete(TDomainEntity item)
{
var entity = EntityMapper.CreateFrom(item);
entity.IsDeleted = true;
entity.DeletedDate = DateTime.UtcNow;
// Update entity using Entity Framework
// ...
}
}
As defined in the class above, the TDataEntity generic now also needs to be of type IDeleteableDataEntity, which requires the following properties:
public interface IDeleteableDataEntity
{
bool IsDeleted { get; set; }
DateTime DeletedDate { get; set; }
}
These properties are set accordingly in the Delete() implementation.
This means that, IF required, I can define IUserRepository with "deletion" capabilities which would inherently be taken care of by the relevant implementation:
public interface IUserRepository : IDeleteableRepository<User>
{
}
Provided that the relevant Entity Framework data entity is an IDeleteableDataEntity, this would not be an issue.
The great thing about this design is that I can start granualising the repository model even further (IUpdateableRepository, IFindableRepository, IDeleteableRepository, IInsertableRepository) and aggregate repositories can now expose only the relevant functionality as per our specification (perhaps you should be allowed to insert into a UserRepository but NOT into a ClientRepository). Further to this, it specifies a standarised way in which certain repository actions are done (i.e. the updating of IsDeleted and DeletedDate columns will be universal and are not at the hand of the developer).
PROBLEM
A problem with the above design arises when I want to create a repository for some aggregate WITHOUT deletion capabilities, e.g:
public interface IClientRepository : IRepository<Client>
{
}
The EntityFrameworkRepository implementation still requires TDataEntity to be of type IDeleteableDataEntity.
I can ensure that the client data entity model does implement IDeleteableDataEntity, but this is misleading and incorrect. There will be additional fields that are never updated.
The only solution I can think of is to remove the IDeleteableDataEntity generic condition from TDataEntity and then cast to the relevant type in the Delete() method:
public abstract class EntityFrameworkRepository<TDomainEntity, TDataEntity> : IDeleteableRepository<TDomainEntity>
where TDomainEntity : DomainEntity, IAggregateRoot
where TDataEntity : class, IDataEntity
{
protected IEntityMapper<TDomainEntity, TDataEntity> EntityMapper { get; private set; }
// Find() and Update() ...
public void Delete(TDomainEntity item)
{
var entity = EntityMapper.CreateFrom(item);
var deleteableEntity = entity as IDeleteableEntity;
if(deleteableEntity != null)
{
deleteableEntity.IsDeleted = true;
deleteableEntity.DeletedDate = DateTime.UtcNow;
entity = deleteableEntity;
}
// Update entity using Entity Framework
// ...
}
}
Because ClientRepository does not implement IDeleteableRepository, there will be no Delete() method exposed, which is good.
QUESTION
Can anyone advise of a better architecture which leverages the C# typing system and does not involve the hacky cast?
Interestly enough, I could do this if C# supported multiple inheritance (with separate concrete implementation for finding, adding, deleting, updating).

I do think that you're complicating things a bit too much trying to get the most generic solution of them all, however I think there's a pretty easy solution to your current problem.
TDataEntity is a persistence data structure, it has no Domain value and it's not known outside the persistence layer. So it can have fields it won't ever use, the repository is the only one knowing that, it'a persistence detail . You can afford to be 'sloppy' here, things aren't that important at this level.
Even the 'hacky' cast is a good solution because it's in one place and a private detail.
It's good to have clean and maintainable code everywhere, however we can't afford to waste time coming up with 'perfect' solutions at every layer. Personally, for view and persistence models I prefer the quickest and simplest solutions even if they're a bit smelly.
P.S: As a thumb rule, generic repository interfaces are good, generic abstract repositories not so much (you need to be careful) unless you're serializing things or using a doc db.

Related

Do we need interfaces for dependency injection?

I have an ASP.NET Core application. The application has few helper classes that does some work. Each class has different signature method. I see lot of .net core examples online that create interface for each class and then register types with DI framework. For example
public interface IStorage
{
Task Download(string file);
}
public class Storage
{
public Task Download(string file)
{
}
}
public interface IOcr
{
Task Process();
}
public class Ocr:IOcr
{
public Task Process()
{
}
}
Basically for each interface there is only one class. Then i register these types with DI as
services.AddScoped<IStorage, Storage>();
services.AddScoped<IOcr,Ocr>();
But i can register type without having interfaces so interfaces here look redundant. eg
services.AddScoped<Storage>();
services.AddScoped<Ocr>();
So do i really need interfaces?
No, you don't need interfaces for dependency injection. But dependency injection is much more useful with them!
As you noticed, you can register concrete types with the service collection and ASP.NET Core will inject them into your classes without problems. The benefit you get by injecting them over simply creating instances with new Storage() is service lifetime management (transient vs. scoped vs. singleton).
That's useful, but only part of the power of using DI. As #DavidG pointed out, the big reason why interfaces are so often paired with DI is because of testing. Making your consumer classes depend on interfaces (abstractions) instead of other concrete classes makes them much easier to test.
For example, you could create a MockStorage that implements IStorage for use during testing, and your consumer class shouldn't be able to tell the difference. Or, you can use a mocking framework to easily create a mocked IStorage on the fly. Doing the same thing with concrete classes is much harder. Interfaces make it easy to replace implementations without changing the abstraction.
Does it work? Yes. Should you do it? No.
Dependency Injection is a tool for the principle of Dependency Inversion : https://en.wikipedia.org/wiki/Dependency_inversion_principle
Or as it's described in SOLID
one should “depend upon abstractions, [not] concretions."
You can just inject concrete classes all over the place and it will work. But it's not what DI was designed to achieve.
No, we don't need interfaces. In addition to injecting classes or interfaces you can also inject delegates. It's comparable to injecting an interface with one method.
Example:
public delegate int DoMathFunction(int value1, int value2);
public class DependsOnMathFunction
{
private readonly DoMathFunction _doMath;
public DependsOnAFunction(DoMathFunction doMath)
{
_doMath = doMath;
}
public int DoSomethingWithNumbers(int number1, int number2)
{
return _doMath(number1, number2);
}
}
You could do it without declaring a delegate, just injecting a Func<Something, Whatever> and that will also work. I'd lean toward the delegate because it's easier to set up DI. You might have two delegates with the same signature that serve unrelated purposes.
One benefit to this is that it steers the code toward interface segregation. Someone might be tempted to add a method to an interface (and its implementation) because it's already getting injected somewhere so it's convenient.
That means
The interface and implementation gain responsibility they possibly shouldn't have just because it's convenient for someone in the moment.
The class that depends on the interface can also grow in its responsibility but it's harder to identify because the number of its dependencies hasn't grown.
Other classes end up depending on the bloated, less-segregated interface.
I've seen cases where a single dependency eventually grows into what should really be two or three entirely separate classes, all because it was convenient to add to an existing interface and class instead of injecting something new. That in turn helped some classes on their way to becoming 2,500 lines long.
You can't prevent someone doing what they shouldn't. You can't stop someone from just making a class depend on 10 different delegates. But it can set a pattern that guides future growth in the right direction and provides some resistance to growing interfaces and classes out control.
(This doesn't mean don't use interfaces. It means that you have options.)
I won't try to cover what others have already mentioned, using interfaces with DI will often be the best option. But it's worth mentioning that using object inheritance at times may provide another useful option. So for example:
public class Storage
{
public virtual Task Download(string file)
{
}
}
public class DiskStorage: Storage
{
public override Task Download(string file)
{
}
}
and registering it like so:
services.AddScoped<Storage, DiskStorage>();
Without Interface
public class Benefits
{
public void BenefitForTeacher() { }
public void BenefitForStudent() { }
}
public class Teacher : Benefits
{
private readonly Benefits BT;
public Teacher(Benefits _BT)
{ BT = _BT; }
public void TeacherBenefit()
{
base.BenefitForTeacher();
base.BenefitForStudent();
}
}
public class Student : Benefits
{
private readonly Benefits BS;
public Student(Benefits _BS)
{ BS = _BS; }
public void StudentBenefit()
{
base.BenefitForTeacher();
base.BenefitForStudent();
}
}
here you can see benefits for Teachers is accessible in Student class and benefits for Student is accessible in Teacher class which is wrong.
Lets see how can we resolve this problem using interface
With Interface
public interface IBenefitForTeacher
{
void BenefitForTeacher();
}
public interface IBenefitForStudent
{
void BenefitForStudent();
}
public class Benefits : IBenefitForTeacher, IBenefitForStudent
{
public Benefits() { }
public void BenefitForTeacher() { }
public void BenefitForStudent() { }
}
public class Teacher : IBenefitForTeacher
{
private readonly IBenefitForTeacher BT;
public Teacher(IBenefitForTeacher _BT)
{ BT = _BT; }
public void BenefitForTeacher()
{
BT.BenefitForTeacher();
}
}
public class Student : IBenefitForStudent
{
private readonly IBenefitForStudent BS;
public Student(IBenefitForStudent _BS)
{ BS = _BS; }
public void BenefitForStudent()
{
BS.BenefitForStudent();
}
}
Here you can see there is no way to call Teacher benefits in Student class and Student benefits in Teacher class
So interface is used here as an abstraction layer.

Object mapper vs Object wrapper

I would appreciate a little help here...
Lets say that in an application we have a Data Layer and a Business Logic Layer. In the DAL we have the following entity:
public class Customer {
public string Name {get; set;}
public ICollection<Address> Addresses {get; set;}
}
public class Address {
public string Street {get; set;}
}
In the BLL we have the following POCOs:
public class CustomerDto {
public string Name {get; set;}
public ICollection<AddressDto> Addresses {get; set;}
}
public class AddressDto {
public string Street {get; set;}
}
The entities in the DAL are populated with a ligth-weight ORM and retrieve from the BLL using a repository. Ex:
public class CustomerInformationService {
private readonly ICustomerRepository _repository {get; set;}
public CustomerInformationService (ICustomerRepository repository)
{
_repository = repository;
}
public class CustomerDto Get(int id)
{
var customerEntity = _repository.Get(id);
var customerDto = /* SOME TRANSFORMATION HERE */
return customerDTO;
}
}
My questions is about the /* SOME TRANSFORMATION HERE */ part. There is a discussion in our team about how to do the "mapping".
One approach is to use a mapper either an automapper or a manual mapping.
The second approach is to use sort of like a wrapper around Entity and reference the DTO in order to save a copying operation between object. Something like this:
public class CustomerDto
{
private IEntity _customerEntity;
public IEntity CustomerEntity { get {return _customerEntity;}}
public CustomerDto(IEntity customerEntity)
{
_customerEntity = customerEntity;
}
public string Name
{
get { return _customerEntity.Name; }
}
public ICollection<Address> Addresses
{
get { return _customerEntity.Addresses; }
}
}
The second approach feels a little weird to me because _customerEntity.Addresses feels like a leak (_customerEntity's reference) between my DAL and my BLL but I am not sure.
Are there any advantages/disavantages of using one approach over the other one?
Additional info: We usually pull a max. of 1000 records at a time that would need to be transform between Entity and DTO.
You did not mentioned your "ligth-weight ORM". I will answer in two sections.
If you are using ORM that creates proxies
You should avoid exposing Entities outside certain boundary. ORMs like NHibernate/EF implement lazy loading based on proxies. If you expose Entities to application/UI layer, you will have little control over ORM behavior. This may lead to many unexpected issues and debugging will also very difficult.
Wrapping Entities in DTOs will gain nothing. You are accessing Entities anyway.
Using DTOs and mapping them with some mapper tool like AutoMapper is good solution here.
If you are using ORM that does not create proxies
Do NOT use DTOs, directly use your Entities. DTOs are useful and recommended here in many cases. But the example you given in question does not need DTOs at all.
In case you choose to use DTOs, wrapping Entities in DTOs does not make sense. If you want to use Entity anyway, why wrap it? Again, tool like AutoMapper could help.
Refer this question. It's bit different; I am asking Yes/No and you are asking How. But still it will help you.
I bet for the service layer approach. Basically because something that looks like a business object or domain object has nothing to do with DTOs.
And, indeed, you and your team should use AutoMapper instead of repeating the same code tons of times which will consist in setting some properties from A to B, A to C, C to B...

Ninject NHibernate on plugin oriented architecture

According COMPOSITION ROOT pattern, I must to construct all dependencies graph as close as possible to the application's entry point.
My architecture is plugin oriented. So, if someone wants to extend my base system he can.
For example, in my base system I have this structure:
View Layer
Services Layer
Data Access Layer
Model Layer
In DAL, I expose some classes like:
IRepository
NHibernateRepository
ProductRepository
So, I'd like if a plugin wants to extend my base Product class to ExtendedProduct, and then create ExtendedProductRepository that inherits from NHibernateRepository.
The question is:
How can instantiate from my base system an instance of NHibernateRepository using NInject?
So, I know the first thing to do is to construct the graph dependencies:
using (var kernel = new StandardKernel())
{
kernel.Bind(b => b.FromAssembliesMatching("*")
.SelectAllClasses()
.InheritedFrom<IRepository>()
.BindAllInterfaces());
}
However, I'm figuring out that when I execute something like:
kernel.GetAll<IRepository>()
It's going to return me a ProductRepository instance, and another ProductExtendedRepository under two IRepository objects.
So, how I can save a ProductExtended object from my base system...?
Another question, would be, how could I inject a object instance in my plugins, or, how can plugins autoinject some instance of base system assembly?
Thanks for all.
I'll appreciate a lot some help.
I use this pattern for my NHibernate based projects:
public interface IRepository<T> : IQueryable<T>
{
T Get(int id);
void Save(T item);
void Delete(T item);
}
public class NHibernateRepository<ModelType> : IRepository<ModelType>
where ModelType : class
{
// implementation
}
then...
public interface IProductRepository : IRepository<Product>
{
// product specific data access methods
}
public class ProductRepository : NHibernateRepository<Product>, IProductRepository
{
// implementation
}
... and in Ninject Module:
Bind(typeof(IRepository<>)).To(typeof(NHibernateRepository<>));
Bind<IProductRepository>().To<ProductRepository>();
then you can either request the base functionality like:
public Constructor(IRepository<Product> repo) { ... }
or specific product repository functionality:
public Constructor(IProductRepository repo) { ... }
your plugins can either get the base functionality and won't have to register anything:
public PluginConstructor(IRepository<ProductExtended> repo { ... }
or create their own repositories and register them in a Ninject module.
Thanks dave.
It's perfect. I'll try it.
However, how could I save or get or update (whichever IRepository methods)... an ExtendedProduct instance from my base system?
Think the follow out:
public interface BasePlugin<T> {...}
In another assembly:
public class PluginExtendedProduct : BasePlugin<ExtendedProduct>
{
public PluginExtendedProduct (IRepository<ExtendedProduct> repo { ... }
}
My headache is how to create an instance of (so, ExtendedProduct) in my base system in order to call methods PluginExtendedProduct that uses an IRepository.
I don't know if I'm explaining myself well...
Thanks for all.

NHibernate - why is this static method legal in this domain class?

I have read in Chapter 4 of the NHibernate docs that all of a persistent classes public methods, properties and events must be declared as virtual.
However, whilst a runtime error is generated for any Properties that are not marked as virtual, I have found that static methods are allowed and do not generate a runtime error . As they are static they are of course not marked virtual which seems to break the rule in point 4.1.4 of the documentation (see above). I have checked the resulting sql and it also implements lazy loading correctly when I run a test against the method so is it therefore ok to use static methods?
Here's the basic details of the persistant class:
public class CmsPage
{
public virtual int? Id { get; set; }
public virtual string Title { get; set; }
public virtual void Update()
{
using (ISession session = NHibernateHelper.OpenSession())
{
using (ITransaction transaction = session.BeginTransaction())
{
session.Update(this);
transaction.Commit();
}
}
}
// Note: static and non-virtual and yet it will not cause a problem for Nhibernate
public static IEnumerable<CmsPage> GetList()
{
IList<CmsPage> pageList;
using (ISession session = NHibernateHelper.OpenSession())
{
string hql = "from CmsPage p";
pageList = session.CreateQuery(hql)
.List<CmsPage>();
}
return pageList;
}
}
So my question is why is it ok to use a static method in the persistent domain class when the documentation seems to say it's not?
Please answer from NHibernate's point of view not an OO design point of view; I don't want to get into an OOD/OOP debate if it can be avoided please.
The documentation says: "NHibernate works best if these classes follow some simple rules, ..." It doesn't say it won't work (clearly it does work).
So, really, the discussion boils down to an OO issue.
Actually this applies only to properties. Methods are not persisted, so proxies and lazy-loading does not apply. Ideally you should separate data access (the static methods in your case) from the domain object. But you are correct to point this out, maybe the documentation should have been clearer.
In conclusion your class is perfectly fine but it could be even better if you separated the concerns.
NHibernate needs all your properties to be virtual because it carries out its lazy-loading magic by making proxies of your objects that override everything. So when you write this code:
class Foo {
public virtual Foo[] Neighbors { get; set; }
}
NHibernate secretly generates classes like:
class NHProxy03450843275 : Foo {
public virtual Foo[] Neighbors { /* Godawful lazy-loading magic goes here */ }
}
Actually it's worse than that, but this gives you the idea. Anyway, static methods aren't bound to particular instances of a class, so NH doesn't need proxies to deal with them. Thus they can be non-virtual.

Using nHibernate and the repository pattern, need some direction

Ok so I 'm just getting into nhibernate (using fluent).
One thing that I love about it is that I can use the Repository pattern (read about it from the nhibernate rhino blog).
Basically using generics, I can create methods that will work accross ALL my database tables.
public interface IRepository<T>
{
T GetById(int id);
ICollection<T> FindAll();
void Add(T entity);
void Remove(T entity);
}
public class Repository<T> : IRepository<T>
{
public ISession Session
{
get
{
return SessionProvider.GetSession();
}
}
public T GetById(int id)
{
return Session.Get<T>(id);
}
public ICollection<T> FindAll()
{
return Session.CreateCriteria(typeof(T)).List<T>();
}
public void Add(T t)
{
Session.Save(t);
}
public void Remove(T t)
{
Session.Delete(t);
}
}
I then inherit the Repository class and I can then add methods that are specific to that entity.
When trying to add an Update method, someone mentioned that the Repository pattern is suppose to act on collections? Am I looking at things incorrectly here? Why can't I create an update method?
I tried adding a update method, but I'm confused as to how I will handle the session and update the database?
I want a single place for all my database access for each entity, so UserRepository will have all basic CRUD and then maybe some other methods like GetUserByEmail() etc.
Don't use the repository pattern - use the UnitOfWork pattern instead, and pass defined query ICriteria to the ISession. Essentially the Repo pattern is wrapping something that doesn't need to be wrapped with NH.
see http://ayende.com/Blog/archive/2009/04/17/repository-is-the-new-singleton.aspx for more info
Perhaps you misheard or someone mispoke - the Repository pattern is supposed to expose collection like behavior, not operate on collections. Just like you can add, remove and search for items in a collection, your repository offers save, delete and search operations that work against your database.
I suggest you download the code for S#arp Architecture. It includes a repository implementation that you can reuse quite easily. If you don't want to take the dependency, at the very least you can spend some time studying their implementation to give you a better idea of how to approach it yourself.