Quake MAP brushes - bsp

Many level editors like Quake or Source games uses implicit plane equation for brush side representation (by 3 points) instead of simple (n.x n.y n.z d).
{
...
( 256 0 0 ) ( 256 0 1 ) ( 256 1 0 ) GROUND1_6 0 0 0 1.0 1.0
( 0 128 0 ) ( 0 128 1 ) ( 1 128 0 ) GROUND1_6 0 0 0 1.0 1.0
...
}
Is there some reason for this? I know it can be easily converted to any form, just wonder why they used this form. Is it some floating point precision stuff?

Quake uses the plane equation, and plane sidedness test, extensively, and so while it seems awkward or annoying if you're just looking to render map geometry, it was likely a pretty easy decision to use this representation. As alluded to above, it allows the map format to use integer coordinates for plane sides. This means the format itself is "lossless" and immune to floating point rounding issues. Vertex coordinates can be calculated at either floating point or full double precision. In fact, newer BSP compilers (q3map2, quemap, etc..) do use double precision for some face splitting calculations.

Related

why does sql server return 0 for 1 / 2?

In sql server when I do select 1 / 2 it returns 0 in stead of 0.5
Why is that?
Should not all divisions return a decimal value?
Is there a setting I can set to make it divide normal?
I noticed the same in c#
What is the logic behind this?
Integer division
select 1 / 2
-- 0
Float division (at least one argument have to be float/decimal):
select 1 / 2.0
-- 0.5
select 1.0 / 2
-- 0.5
select 1.0 / 2.0
-- 0.5
Divide
If an integer dividend is divided by an integer divisor, the result is
an integer that has any fractional part of the result truncated.
EDIT:
The point is you ask why?
Becasue creator of language decided so, history, convention whatsoever.
I suggest read Is integer division uniquely defined in mathematics?.
Keep in mind that in some languages you have 2 division operators (one for integer division and one for real division).
Division Integer
Dividing integers in a computer program requires special care. Some
programming languages, such as C, treat integer division as in case 5
above, so the answer is an integer. Other languages, such as MATLAB
and every computer algebra system return a rational number as the
answer, as in case 3 above. These languages also provide functions to
get the results of the other cases, either directly or from the result
of case 3.
Names and symbols used for integer division include div, /, \, and %.
Definitions vary regarding integer division when the dividend or the
divisor is negative: rounding may be toward zero (so called
T-division) or toward −∞ (F-division); rarer styles can occur – see
Modulo operation for the details.
For downvoters leave a comment so I can reply/improve my answer.

Division in double precision

I have two double variables:
a > 0
b >= 0
which could be tiny numbers. 'a' represents singular values of a matrix and 'b' represents the Tikhonov regularization constant. As part of the Tikhonov least squares solution, it is necessary to compute the quantity:
c = a*a / (a*a + b)
However if a is really small (ie small singular values of the matrix), a*a may not be representable in double precision. How can I compute this quotient c in a numerically stable way for the given ranges of a,b?
The best I can come up with is:
c = 1 / (1 + b / a / a)
To derive this equivalency, note that 1/c is (a^2 + b)/c and then decompose the fraction. This form might be more numerically stable since it doesn't require a^2 to be calculated at any point. It'll still lose precision if both b and a are very small. If that case must be handled too, you might look at a Taylor series expansion (may or may not work for this case).

32-bit fractional multiplication with cross-multiplication method (no 64-bit intermediate result)

I am programming a fixed-point speech enhancement algorithm on a 16-bit processor. At some point I need to do 32-bit fractional multiplication. I have read other posts about doing 32-bit multiplication byte by byte and I see why this works for Q0.31 formats. But I use different Q formats with varying number of fractional bits.
So I have found out that for fractional bits less than 16, this works:
(low*low >> N) + low*high + high*low + (high*high << N)
where N is the number of fractional bits. I have read that the low*low result should be unsigned as well as the low bytes themselves. In general this gives exactly the result I want in any Q format with less than 16 fractional bits.
Now it gets tricky when the fractional bits are more than 16. I have tried out several numbers of shifts, different shifts for low*low and high*high I have tried to put it on paper, but I can't figure it out.
I know it may be very simple but the whole idea eludes me and I would be grateful for some comments or guidelines!
It's the same formula. For N > 16, the shifts just mean you throw out a whole 16-bit word which would have over- or underflowed. low*low >> N means just shift N-16 bit in the high word of the 32-bit result of the multiply and add to the low word of the result. high * high << N means just use the low word of the multiply result shifted left N-16 and add to the high word of the result.
There are a few ideas at play.
First, multiplication of 2 shorter integers to produce a longer product. Consider unsigned multiplication of 2 32-bit integers via multiplications of their 16-bit "halves", each of which produces a 32-bit product and the total product is 64-bit:
a * b = (a_hi * 216 + a_lo) * (b_hi * 216 + b_lo) =
a_hi * b_hi * 232 + (a_hi * b_lo + a_lo * b_hi) * 216 + a_lo * b_lo.
Now, if you need a signed multiplication, you can construct it from unsigned multiplication (e.g. from the above).
Supposing a < 0 and b >= 0, a *signed b must be equal
264 - ((-a) *unsigned b), where
-a = 232 - a (because this is 2's complement)
IOW,
a *signed b =
264 - ((232 - a) *unsigned b) =
264 + (a *unsigned b) - (b * 232), where 264 can be discarded since we're using 64 bits only.
In exactly the same way you can calculate a *signed b for a >= 0 and b < 0 and must get a symmetric result:
(a *unsigned b) - (a * 232)
You can similarly show that for a < 0 and b < 0 the signed multiplication can be built on top of the unsigned multiplication this way:
(a *unsigned b) - ((a + b) * 232)
So, you multiply a and b as unsigned first, then if a < 0, you subtract b from the top 32 bits of the product and if b < 0, you subtract a from the top 32 bits of the product, done.
Now that we can multiply 32-bit signed integers and get 64-bit signed products, we can finally turn to the fractional stuff.
Suppose now that out of those 32 bits in a and b N bits are used for the fractional part. That means that if you look at a and b as at plain integers, they are going to be 2N times greater than what they really represent, e.g. 1.0 is going to look like 2N (or 1 << N).
So, if you multiply two such integers the product is going to be 2N*2N = 22*N times greater than what it should represent, e.g. 1.0 * 1.0 is going to look like 22*N (or 1 << (2*N)). IOW, plain integer multiplication is going to double the number of fractional bits. If you want the product to
have the same number of fractional bits as in the multiplicands, what do you do? You divide the product by 2N (or shift it arithmetically N positions right). Simple.
A few words of caution, just in case...
In C (and C++) you cannot legally shift a variable left or right by the same or greater number of bits contained in the variable. The code will compile, but not work as you may expect it to. So, if you want to shift a 32-bit variable, you can shift it by 0 through 31 positions left or right (31 is the max, not 32).
If you shift signed integers left, you cannot overflow the result legally. All signed overflows result in undefined behavior. So, you may want to stick to unsigned.
Right shifts of negative signed integers are implementation-specific. They can either do an arithmetic shift or a logical shift. Which one, it depends on the compiler. So, if you need one of the two you need to either ensure that your compiler just supports it directly
or implement it in some other ways.

How do you multiply two fixed point numbers?

I am currently trying to figure out how to multiply two numbers in fixed point representation.
Say my number representation is as follows:
[SIGN][2^0].[2^-1][2^-2]..[2^-14]
In my case, the number 10.01000000000000 = -0.25.
How would I for example do 0.25x0.25 or -0.25x0.25 etc?
Hope you can help!
You should use 2's complement representation instead of a seperate sign bit. It's much easier to do maths on that, no special handling is required. The range is also improved because there's no wasted bit pattern for negative 0. To multiply, just do as normal fixed-point multiplication. The normal Q2.14 format will store value x/214 for the bit pattern of x, therefore if we have A and B then
So you just need to multiply A and B directly then divide the product by 214 to get the result back into the form x/214 like this
AxB = ((int32_t)A*B) >> 14;
A rounding step is needed to get the nearest value. You can find the way to do it in Q number format#Math operations. The simplest way to round to nearest is just add back the bit that was last shifted out (i.e. the first fractional bit) like this
AxB = (int32_t)A*B;
AxB = (AxB >> 14) + ((AxB >> 13) & 1);
You might also want to read these
Fixed-point arithmetic.
Emulated Fixed Point Division/Multiplication
Fixed point math in c#?
With 2 bits you can represent the integer range of [-2, 1]. So using Q2.14 format, -0.25 would be stored as 11.11000000000000. Using 1 sign bit you can only represent -1, 0, 1, and it makes calculations more complex because you need to split the sign bit then combine it back at the end.
Multiply into a larger sized variable, and then right shift by the number of bits of fixed point precision.
Here's a simple example in C:
int a = 0.25 * (1 << 16);
int b = -0.25 * (1 << 16);
int c = (a * b) >> 16;
printf("%.2f * %.2f = %.2f\n", a / 65536.0, b / 65536.0 , c / 65536.0);
You basically multiply everything by a constant to bring the fractional parts up into the integer range, then multiply the two factors, then (optionally) divide by one of the constants to return the product to the standard range for use in future calculations. It's like multiplying prices expressed in fractional dollars by 100 and then working in cents (i.e. $1.95 * 100 cents/dollar = 195 cents).
Be careful not to overflow the range of the variable you are multiplying into. Your constant might need to be smaller to avoid overflow, like using 1 << 8 instead of 1 << 16 in the example above.

Is there an iterative way to calculate radii along a scanline?

I am processing a series of points which all have the same Y value, but different X values. I go through the points by incrementing X by one. For example, I might have Y = 50 and X is the integers from -30 to 30. Part of my algorithm involves finding the distance to the origin from each point and then doing further processing.
After profiling, I've found that the sqrt call in the distance calculation is taking a significant amount of my time. Is there an iterative way to calculate the distance?
In other words:
I want to efficiently calculate: r[n] = sqrt(x[n]*x[n] + y*y)). I can save information from the previous iteration. Each iteration changes by incrementing x, so x[n] = x[n-1] + 1. I can not use sqrt or trig functions because they are too slow except at the beginning of each scanline.
I can use approximations as long as they are good enough (less than 0.l% error) and the errors introduced are smooth (I can't bin to a pre-calculated table of approximations).
Additional information:
x and y are always integers between -150 and 150
I'm going to try a couple ideas out tomorrow and mark the best answer based on which is fastest.
Results
I did some timings
Distance formula: 16 ms / iteration
Pete's interperlating solution: 8 ms / iteration
wrang-wrang pre-calculation solution: 8ms / iteration
I was hoping the test would decide between the two, because I like both answers. I'm going to go with Pete's because it uses less memory.
Just to get a feel for it, for your range y = 50, x = 0 gives r = 50 and y = 50, x = +/- 30 gives r ~= 58.3. You want an approximation good for +/- 0.1%, or +/- 0.05 absolute. That's a lot lower accuracy than most library sqrts do.
Two approximate approaches - you calculate r based on interpolating from the previous value, or use a few terms of a suitable series.
Interpolating from previous r
r = ( x2 + y2 ) 1/2
dr/dx = 1/2 . 2x . ( x2 + y2 ) -1/2 = x/r
double r = 50;
for ( int x = 0; x <= 30; ++x ) {
double r_true = Math.sqrt ( 50*50 + x*x );
System.out.printf ( "x: %d r_true: %f r_approx: %f error: %f%%\n", x, r, r_true, 100 * Math.abs ( r_true - r ) / r );
r = r + ( x + 0.5 ) / r;
}
Gives:
x: 0 r_true: 50.000000 r_approx: 50.000000 error: 0.000000%
x: 1 r_true: 50.010000 r_approx: 50.009999 error: 0.000002%
....
x: 29 r_true: 57.825065 r_approx: 57.801384 error: 0.040953%
x: 30 r_true: 58.335225 r_approx: 58.309519 error: 0.044065%
which seems to meet the requirement of 0.1% error, so I didn't bother coding the next one, as it would require quite a bit more calculation steps.
Truncated Series
The taylor series for sqrt ( 1 + x ) for x near zero is
sqrt ( 1 + x ) = 1 + 1/2 x - 1/8 x2 ... + ( - 1 / 2 )n+1 xn
Using r = y sqrt ( 1 + (x/y)2 ) then you're looking for a term t = ( - 1 / 2 )n+1 0.36n with magnitude less that a 0.001, log ( 0.002 ) > n log ( 0.18 ) or n > 3.6, so taking terms to x^4 should be Ok.
Y=10000
Y2=Y*Y
for x=0..Y2 do
D[x]=sqrt(Y2+x*x)
norm(x,y)=
if (y==0) x
else if (x>y) norm(y,x)
else {
s=Y/y
D[round(x*s)]/s
}
If your coordinates are smooth, then the idea can be extended with linear interpolation. For more precision, increase Y.
The idea is that s*(x,y) is on the line y=Y, which you've precomputed distances for. Get the distance, then divide it by s.
I assume you really do need the distance and not its square.
You may also be able to find a general sqrt implementation that sacrifices some accuracy for speed, but I have a hard time imagining that beating what the FPU can do.
By linear interpolation, I mean to change D[round(x)] to:
f=floor(x)
a=x-f
D[f]*(1-a)+D[f+1]*a
This doesn't really answer your question, but may help...
The first questions I would ask would be:
"do I need the sqrt at all?".
"If not, how can I reduce the number of sqrts?"
then yours: "Can I replace the remaining sqrts with a clever calculation?"
So I'd start with:
Do you need the exact radius, or would radius-squared be acceptable? There are fast approximatiosn to sqrt, but probably not accurate enough for your spec.
Can you process the image using mirrored quadrants or eighths? By processing all pixels at the same radius value in a batch, you can reduce the number of calculations by 8x.
Can you precalculate the radius values? You only need a table that is a quarter (or possibly an eighth) of the size of the image you are processing, and the table would only need to be precalculated once and then re-used for many runs of the algorithm.
So clever maths may not be the fastest solution.
Well there's always trying optimize your sqrt, the fastest one I've seen is the old carmack quake 3 sqrt:
http://betterexplained.com/articles/understanding-quakes-fast-inverse-square-root/
That said, since sqrt is non-linear, you're not going to be able to do simple linear interpolation along your line to get your result. The best idea is to use a table lookup since that will give you blazing fast access to the data. And, since you appear to be iterating by whole integers, a table lookup should be exceedingly accurate.
Well, you can mirror around x=0 to start with (you need only compute n>=0, and the dupe those results to corresponding n<0). After that, I'd take a look at using the derivative on sqrt(a^2+b^2) (or the corresponding sin) to take advantage of the constant dx.
If that's not accurate enough, may I point out that this is a pretty good job for SIMD, which will provide you with a reciprocal square root op on both SSE and VMX (and shader model 2).
This is sort of related to a HAKMEM item:
ITEM 149 (Minsky): CIRCLE ALGORITHM
Here is an elegant way to draw almost
circles on a point-plotting display:
NEW X = OLD X - epsilon * OLD Y
NEW Y = OLD Y + epsilon * NEW(!) X
This makes a very round ellipse
centered at the origin with its size
determined by the initial point.
epsilon determines the angular
velocity of the circulating point, and
slightly affects the eccentricity. If
epsilon is a power of 2, then we don't
even need multiplication, let alone
square roots, sines, and cosines! The
"circle" will be perfectly stable
because the points soon become
periodic.
The circle algorithm was invented by
mistake when I tried to save one
register in a display hack! Ben Gurley
had an amazing display hack using only
about six or seven instructions, and
it was a great wonder. But it was
basically line-oriented. It occurred
to me that it would be exciting to
have curves, and I was trying to get a
curve display hack with minimal
instructions.