How to calculate percentage improvement in response time for performance testing - optimization

How should I calculate the percentage improvement in response time.
I am getting 15306 ms response time for old code and 799 ms response for the updated code. What will be the percentage improvement in response time?

There are two ways to interpret "percentage improvement in response time". One is the classic and ubiquitous formula for computing a percentage change in a data point from an old value to a new value, which looks like this:
(new - old)/old*100%
So for your case:
(799 - 15306)/15306*100% = -94.78%
That means the new value is 94.78% smaller (faster, since we're talking about response time) than the old value.
The second way of interpreting the statement is to take the percentage of the old value that the new value "covers" or "reaches":
new/old*100%
For your case:
799/15306*100% = 5.22%
That means the new value is just 5.22% of the old value, which, for response time, means it takes just 5.22% of the time to respond, compared to the old response time.
The use of the word "improvement" suggests that you want the 94.78% value, as that shows how much of the lag in the old response time was eliminated ("improved") by the new code. But when it comes to natural language, it can be difficult to be certain about precise meaning without careful clarification.

I think the accepted answer suffers from the original question not having
nice round numbers and that there are 3 different ways to state the
result.
Let's assume that the old time was 10 seconds and the new time is 5 seconds.
There's clearly a 50% reduction (or decrease) in the new time:
(old-new)/old x 100% = (10-5)/10 x 100% = 50%
But when you talk about an increase in performance, where a bigger increase is clearly better, you can't use the formula above. Instead, the increase in performance is 100%:
(old-new)/new x 100% = (10-5)/5 x 100% = 100%
The 5 second time is 2x faster than the 10 second time. Said a different way, you can do the task twice (2x) now for every time you used to be able to do it.
old/new = 10/5 = 2.0
So now let's consider the original question
The old time was 15306 ms and the new time is 799 ms.
There is a 94.7% reduction in time.
(old-new)/old x 100% = (15306-799)/15306 x 100% = 94.7%
There is a 1816% increase in performance:
(old-new)/new x 100% = (15306-799)/799 x 100% = 1815.6%
Your new time is 19x faster:
old/new = 15306/799 = 19.16

Actually performance is about how much can be done in the same amount of time.
So the formula is OLD/NEW - 1
In your case your performance increased by 1816% (i.e. you can do 18.16X more in the same time)
15306/799 - 1 = 1816%
Note: before you could do 1/15360, now 1/799 ...

your code's runtime is 94.78% shorter/improved/decreased:
(new - old) / old x 100%
(799 - 15306) / 15306 x 100% =~ -94.78% (minus represents decrease)
your code is 1816% faster:
(old - new) / new x 100%
(15306 - 799) / 799 x 100% =~ 1816%

Couple of responses already answered the question correctly, but let me expand those answers with some additional thoughts and a practical example.
Percentage improvement is usually calculated as ((NEW - OLD)/OLD) * 100
Let us think about it with some practical examples:
If I make $10,000 in my current job and get a new job that offers $12,000 then I am getting 20% increase in salary with this new job ((12000 - 10000)/10000)*100
If Train A travels at 100 miles per hour and Train B travels at 150 miles per hour, Train B is 50% faster than Train A. Simple, right?
It gets tricky when you try to measure a metric using another metric that has an inverse relationship with the metric you are trying to measure. Let me explain what I mean by this.
Let us try the second example again now using "time taken to reach destination". Let us say Train A takes 3 hours to reach the destination and Train B takes 2 hours to reach the same destination. Train B is faster than Train A by what percentage?
If we use the same formula we used in the above examples, we get ((2-3)/3)*100, which is -33%. This simply tells that Train B takes 33% less time to reach the destination than Train A, but that is not what we are trying to determine. Right? We are trying to measure the difference in speed by percentage. If we change the formula slightly and take the absolute value, we get 33%, which may seem right, but not really. (I'll explain why in a minute)
So, what do we do? The first thing we need to do is to convert the metric we have in hand to the metric we want to measure. After that, we should be able to use the same formula. In this example, we are trying to measure difference in speed. So let us first get the speed of each train. Train A travels at 1/3 of the distance per hour. Train B travels at 1/2 distance per hour. The difference in speed in percentage then is: ((1/2 - 1/3)/1/3) * 100 = ((1/2 - 1/3)*3)*100 = (3/2 - 3/3) * 100 = 50%
Which happens to be same as ((3 - 2)/2) * 100.
In short, when the metric we are measuring and the metric we have at hand have an inverse relationship, the formula should be
((OLD - NEW)/NEW) * 100
What is wrong with the original formula? Why can't we use the original formula and conclude that train B is only 33% faster? Because it is inaccurate. The original formula always yields a result that is less than 100%. Imagine a flight reaching the same destination in 15 mins? The first formula tells that flight is 91.6% faster while the second formula tells that the flight is 1100% faster (or 11 times faster), which is more accurate.
Using this modified formula, the percentage improvement for case posted in the original question is ((15306 - 799)/799) * 100 = 1815.6%

((old time - new time) / old time) * 100
This formula will give the Percentage Decreased in New Response time.
In your case, ((15306 - 799)/ 15306) * 100 = 94.78 %

The formula for finding the percentage of reduction is:
P = a/b × 100
Where P is the percentage of reduction, a is the amount of the reduction and b is the original amount that was reduced.
So to calculate a you do: old - new wichi will translate into:
P = ((OLD - NEW)/OLD)*100

Related

Getting fuel% from analog data

I am getting analog voltage data, in mV, from a fuel gauge. The calibration readings were taken for every 10% change in the fuel gauge as mentioned below :
0% - 2000mV
10% - 2100mV
20% - 3200mV
30% - 3645mV
40% - 3755mV
50% - 3922mV
60% - 4300mV
70% - 4500mv
80% - 5210mV
90% - 5400mV
100% - 5800mV
The tank capacity is 45L.
Post calibration, I am getting reading from adc as let's say, 3000mV. How to calculate the exact % of fuel left in the tank?
If you plot the transfer function of ADC reading agaist the percentage tank contents you get a graph like this
There appears to be a fair degree of non linearity in the relationship between the sensor and the measured quantity. This could be down to a measurement error that was made while performing the calibration or it could be a true non linear relationship between the sensor reading and the tank contents. Using these results will give fairly inaccurate estimates of tank contents due to the non linearity of the transfer function.
If the relationship is linear or can be described by another mathematical relationship then you can perform an interpolation between known points using this mathematical relationship.
If the relationship is not linear than you will need many more known points in your calibration data so that the errors due to the interpolation between points is minimised.
The percentage value corresponding to the ADC reading can be approximated by finding the entries in the calibration above and below the reading that has been taken - for the ADC reading example in the question these would be the 10% and 20% values
Interpolation_Proportion = (ADC - ADC_Below) / (ADC_Above - ADC_Below) ;
Percent = Percent_Below + (Interpolation_Proportion * (Percent_Above - Percent_Below)) ;
.
Interpolation proportion = (3000-2100)/(3200-2100)
= 900/1100
= 0.82
Percent = 10 + (0.82 * (20 - 10)
= 10 + 8.2
= 18.2%
Capacity = 45 * 18.2 / 100
= 8.19 litres
When plotted it appears that the data id broadly linear, with some outliers. It is likely that this is experimental error or possibly influenced by confounding factors such as electrical noise or temperature variation, or even just the the liquid slopping around! Without details of how the data was gathered and how carefully, it is not possible to determine, but I would ask how many samples were taken per measurement, whether these are averaged or instantaneous and whether the results are exactly repeatable over more than one experiment?
Assuming the results are "indicative" only, then it is probably wisest from the data you do have to assume that the transfer function is linear, and to perform a linear regression from the scatter plot of your test data. That can be most done easily using any spreadsheet charting "trendline" function:
From your date the transfer function is:
Fuel% = (0.0262 x SensormV) - 54.5
So for your example 3000mV, Fuel% = (0.0262 x 3000) - 54.5 = 24.1%
For your 45L tank that equates to about 10.8 Litres.

Running a logistic model in JAGS - Can you vectorize instead of looping over individual cases?

I'm fairly new to JAGS, so this may be a dumb question. I'm trying to run a model in JAGS that predicts the probability that a one-dimensional random walk process will cross boundary A before crossing boundary B. This model can be solved analytically via the following logistic model:
Pr(A,B) = 1/(1 + exp(-2 * (d/sigma) * theta))
where "d" is the mean drift rate (positive values indicate drift toward boundary A), "sigma" is the standard deviation of that drift rate and "theta" is the distance between the starting point and the boundary (assumed to be equal for both boundaries).
My dataset consists of 50 participants, who each provide 1800 observations. My model assumes that d is determined by a particular combination of observed environmental variables (which I'll just call 'x'), and a weighting coefficient that relates x to d (which I'll call 'beta'). Thus, there are three parameters: beta, sigma, and theta. I'd like to estimate a single set of parameters for each participant. My intention is to eventually run a hierarchical model, where group level parameters influence individual level parameters. However, for simplicity, here I will just consider a model in which I estimate a single set of parameters for one participant (and thus the model is not hierarchical).
My model in rjags would be as follows:
model{
for ( i in 1:Ntotal ) {
d[i] <- x[i] * beta
probA[i] <- 1/(1+exp(-2 * (d[i]/sigma) * theta ) )
y[i] ~ dbern(probA[i])
}
beta ~ dunif(-10,10)
sigma ~ dunif(0,10)
theta ~ dunif(0,10)
}
This model runs fine, but takes ages to run. I'm not sure how JAGS carries out the code, but if this code were run in R, it would be rather inefficient because it would have to loop over cases, running the model for each case individually. The time required to run the analysis would therefore increase rapidly as the sample size increases. I have a rather large sample, so this is a concern.
Is there a way to vectorise this code so that it can calculate the likelihood for all of the data points at once? For example, if I were to run this as a simple maximum likelihood model. I would vectorize the model and calculate the probability of the data given particular parameter values for all 1800 cases provided by the participant (and thus would not need the for loop). I would then take the log of these likelihoods and add them all together to give a single loglikelihood for the all observations given by the participant. This method has enormous time savings. Is there a way to do this in JAGS?
EDIT
Thanks for the responses, and for pointing out that the parameters in the model I showed might be unidentified. I should've pointed out that model was a simplified version. The full model is below:
model{
for ( i in 1:Ntotal ) {
aExpectancy[i] <- 1/(1+exp(-gamma*(aTimeRemaining[i] - aDiscrepancy[i]*aExpectedLag[i]) ) )
bExpectancy[i] <- 1/(1+exp(-gamma*(bTimeRemaining[i] - bDiscrepancy[i]*bExpectedLag[i]) ) )
aUtility[i] <- aValence[i]*aExpectancy[i]/(1 + discount * (aTimeRemaining[i]))
bUtility[i] <- bValence[i]*bExpectancy[i]/(1 + discount * (bTimeRemaining[i]))
aMotivationalValueMean[i] <- aUtility[i]*aQualityMean[i]
bMotivationalValueMean[i] <- bUtility[i]*bQualityMean[i]
aMotivationalValueVariance[i] <- (aUtility[i]*aQualitySD[i])^2 + (bUtility[i]*bQualitySD[i])^2
bMotivationalValueVariance[i] <- (aUtility[i]*aQualitySD[i])^2 + (bUtility[i]*bQualitySD[i])^2
mvDiffVariance[i] <- aMotivationalValueVariance[i] + bMotivationalValueVariance[i]
meanDrift[i] <- (aMotivationalValueMean[i] - bMotivationalValueMean[i])
probA[i] <- 1/(1+exp(-2*(meanDrift[i]/sqrt(mvDiffVariance[i])) *theta ) )
y[i] ~ dbern(probA[i])
}
In this model, the estimated parameters are theta, discount, and gamma, and these parameters can be recovered. When I run the model on the observations for a single participant (Ntotal = 1800), the model takes about 5 minutes to run, which is totally fine. However, when I run the model on the entire sample (45 participants x 1800 cases each = 78,900 observations), I've had it running for 24 hours and it's less than 50% of the way through. This seems odd, as I would expect it to just take 45 times as long, so 4 or 5 hours at most. Am I missing something?
I hope I am not misreading this situation (and I previously apologize if I am), but your question seems to come from a conceptual misunderstanding of how JAGS works (or WinBUGS or OpenBUGS for that matter).
Your program does not actually run, because what you wrote was not written in a programming language. So vectorizing will not help.
You wrote just a description of your model, because JAGS' language is a descriptive one.
Once JAGS reads your model, it assembles a transition matrix to run a MCMC whose stationary distribution is the posteriori distribution of your parameters given your (observed) data. JAGS does nothing else with your program.
All that time you have been waiting the program to run was actually waiting (and hoping) to reach relaxation time of your MCMC.
So, what is taking your program too long to run is that the resulting transition matrix must have bad relaxing properties or anything like that.
That is why vectorizing a program that is read and run only once will be of very little help.
So, your problem lies somewhere else.
I hope it helps and, if not, sorry.
All the best.
You can't vectorise in the same way that you would in R, but if you can group observations with the same probability expression (i.e. common d[i]) then you can use a Binomial rather than Bernoulli distribution which will help enormously. If each observation has a unique d[i] then you are stuck I'm afraid.
Another alternative is to look at Stan which is generally faster for large data sets like yours.
Matt
thanks for the responses. Yes, you make a good point that the parameters in the model I showed might be unidentified.
I should've pointed out that model was a simplified version. The full model is below:
model{
for ( i in 1:Ntotal ) {
aExpectancy[i] <- 1/(1+exp(-gamma*(aTimeRemaining[i] - aDiscrepancy[i]*aExpectedLag[i]) ) )
bExpectancy[i] <- 1/(1+exp(-gamma*(bTimeRemaining[i] - bDiscrepancy[i]*bExpectedLag[i]) ) )
aUtility[i] <- aValence[i]*aExpectancy[i]/(1 + discount * (aTimeRemaining[i]))
bUtility[i] <- bValence[i]*bExpectancy[i]/(1 + discount * (bTimeRemaining[i]))
aMotivationalValueMean[i] <- aUtility[i]*aQualityMean[i]
bMotivationalValueMean[i] <- bUtility[i]*bQualityMean[i]
aMotivationalValueVariance[i] <- (aUtility[i]*aQualitySD[i])^2 + (bUtility[i]*bQualitySD[i])^2
bMotivationalValueVariance[i] <- (aUtility[i]*aQualitySD[i])^2 + (bUtility[i]*bQualitySD[i])^2
mvDiffVariance[i] <- aMotivationalValueVariance[i] + bMotivationalValueVariance[i]
meanDrift[i] <- (aMotivationalValueMean[i] - bMotivationalValueMean[i])
probA[i] <- 1/(1+exp(-2*(meanDrift[i]/sqrt(mvDiffVariance[i])) *theta ) )
y[i] ~ dbern(probA[i])
}
theta ~ dunif(0,10)
discount ~ dunif(0,10)
gamma ~ dunif(0,1)
}
In this model, the estimated parameters are theta, discount, and gamma, and these parameters can be recovered.
When I run the model on the observations for a single participant (Ntotal = 1800), the model takes about 5 minutes to run, which is totally fine.
However, when I run the model on the entire sample (45 participants X 1800 cases each = 78,900 observations), I've had it running for 24 hours and it's less than 50% of the way through.
This seems odd, as I would expect it to just take 45 times as long, so 4 or 5 hours at most. Am I missing something?

Efficiency of the modulo operator for bounds checking

I was reading this page on operation performance in .NET and saw there's a really huge difference between the division operation and the rest.
Then, the modulo operator is slow, but how much with respect to the cost of a conditional block we can use for the same purpose?
Let's assume we have a positive number y that can't be >= 20. Which one is more efficient as a general rule (not only in .NET)?
This:
x = y % 10
or this:
x = y
if (x >= 10)
{
x -= 10
}
How many times are you calling the modulo operation? If it's in some tight inner loop that's getting called many times a second, maybe you should look at other ways of preventing array overflow. If it's being called < (say) 10,000 times, I wouldn't worry about it.
As for performance between your snippets - test them (with some real-world data if possible). You don't know what the compiler/JITer and CPU are doing under the hood. The % could be getting optimized to an & if the 2nd argument is constant and a power of 2. At the CPU level you're talking about the difference between division and branch prediction, which is going to depend on the rest of your code.

How to design acceptance probability function for simulated annealing with multiple distinct costs?

I am using simulated annealing to solve an NP-complete resource scheduling problem. For each candidate ordering of the tasks I compute several different costs (or energy values). Some examples are (though the specifics are probably irrelevant to the question):
global_finish_time: The total number of days that the schedule spans.
split_cost: The number of days by which each task is delayed due to interruptions by other tasks (this is meant to discourage interruption of a task once it has started).
deadline_cost: The sum of the squared number of days by which each missed deadline is overdue.
The traditional acceptance probability function looks like this (in Python):
def acceptance_probability(old_cost, new_cost, temperature):
if new_cost < old_cost:
return 1.0
else:
return math.exp((old_cost - new_cost) / temperature)
So far I have combined my first two costs into one by simply adding them, so that I can feed the result into acceptance_probability. But what I would really want is for deadline_cost to always take precedence over global_finish_time, and for global_finish_time to take precedence over split_cost.
So my question to Stack Overflow is: how can I design an acceptance probability function that takes multiple energies into account but always considers the first energy to be more important than the second energy, and so on? In other words, I would like to pass in old_cost and new_cost as tuples of several costs and return a sensible value .
Edit: After a few days of experimenting with the proposed solutions I have concluded that the only way that works well enough for me is Mike Dunlavey's suggestion, even though this creates many other difficulties with cost components that have different units. I am practically forced to compare apples with oranges.
So, I put some effort into "normalizing" the values. First, deadline_cost is a sum of squares, so it grows exponentially while the other components grow linearly. To address this I use the square root to get a similar growth rate. Second, I developed a function that computes a linear combination of the costs, but auto-adjusts the coefficients according to the highest cost component seen so far.
For example, if the tuple of highest costs is (A, B, C) and the input cost vector is (x, y, z), the linear combination is BCx + Cy + z. That way, no matter how high z gets it will never be more important than an x value of 1.
This creates "jaggies" in the cost function as new maximum costs are discovered. For example, if C goes up then BCx and Cy will both be higher for a given (x, y, z) input and so will differences between costs. A higher cost difference means that the acceptance probability will drop, as if the temperature was suddenly lowered an extra step. In practice though this is not a problem because the maximum costs are updated only a few times in the beginning and do not change later. I believe this could even be theoretically proven to converge to a correct result since we know that the cost will converge toward a lower value.
One thing that still has me somewhat confused is what happens when the maximum costs are 1.0 and lower, say 0.5. With a maximum vector of (0.5, 0.5, 0.5) this would give the linear combination 0.5*0.5*x + 0.5*y + z, i.e. the order of precedence is suddenly reversed. I suppose the best way to deal with it is to use the maximum vector to scale all values to given ranges, so that the coefficients can always be the same (say, 100x + 10y + z). But I haven't tried that yet.
mbeckish is right.
Could you make a linear combination of the different energies, and adjust the coefficients?
Possibly log-transforming them in and out?
I've done some MCMC using Metropolis-Hastings. In that case I'm defining the (non-normalized) log-likelihood of a particular state (given its priors), and I find that a way to clarify my thinking about what I want.
I would take a hint from multi-objective evolutionary algorithm (MOEA) and have it transition if all of the objectives simultaneously pass with the acceptance_probability function you gave. This will have the effect of exploring the Pareto front much like the standard simulated annealing explores plateaus of same-energy solutions.
However, this does give up on the idea of having the first one take priority.
You will probably have to tweak your parameters, such as giving it a higher initial temperature.
I would consider something along the lines of:
If (new deadline_cost > old deadline_cost)
return (calculate probability)
else if (new global finish time > old global finish time)
return (calculate probability)
else if (new split cost > old split cost)
return (calculate probability)
else
return (1.0)
Of course each of the three places you calculate the probability could use a different function.
It depends on what you mean by "takes precedence".
For example, what if the deadline_cost goes down by 0.001, but the global_finish_time cost goes up by 10000? Do you return 1.0, because the deadline_cost decreased, and that takes precedence over anything else?
This seems like it is a judgment call that only you can make, unless you can provide enough background information on the project so that others can suggest their own informed judgment call.

How to calculate deceleration needed to reach a certain speed over a certain distance?

I've tried the typical physics equations for this but none of them really work because the equations deal with constant acceleration and mine will need to change to work correctly. Basically I have a car that can be going at a large range of speeds and needs to slow down and stop over a given distance and time as it reaches the end of its path.
So, I have:
V0, or the current speed
Vf, or the speed I want to reach (typically 0)
t, or the amount of time I want to take to reach the end of my path
d, or the distance I want to go as I change from V0 to Vf
I want to calculate
a, or the acceleration needed to go from V0 to Vf
The reason this becomes a programming-specific question is because a needs to be recalculated every single timestep as the car keeps stopping. So, V0 constantly is changed to be V0 from last timestep plus the a that was calculated last timestep. So essentially it will start stopping slowly then will eventually stop more abruptly, sort of like a car in real life.
EDITS:
All right, thanks for the great responses. A lot of what I needed was just some help thinking about this. Let me be more specific now that I've got some more ideas from you all:
I have a car c that is 64 pixels from its destination, so d=64. It is driving at 2 pixels per timestep, where a timestep is 1/60 of a second. I want to find the acceleration a that will bring it to a speed of 0.2 pixels per timestep by the time it has traveled d.
d = 64 //distance
V0 = 2 //initial velocity (in ppt)
Vf = 0.2 //final velocity (in ppt)
Also because this happens in a game loop, a variable delta is passed through to each action, which is the multiple of 1/60s that the last timestep took. In other words, if it took 1/60s, then delta is 1.0, if it took 1/30s, then delta is 0.5. Before acceleration is actually applied, it is multiplied by this delta value. Similarly, before the car moves again its velocity is multiplied by the delta value. This is pretty standard stuff, but it might be what is causing problems with my calculations.
Linear acceleration a for a distance d going from a starting speed Vi to a final speed Vf:
a = (Vf*Vf - Vi*Vi)/(2 * d)
EDIT:
After your edit, let me try and gauge what you need...
If you take this formula and insert your numbers, you get a constant acceleration of -0,0309375. Now, let's keep calling this result 'a'.
What you need between timestamps (frames?) is not actually the acceleration, but new location of the vehicle, right? So you use the following formula:
Sd = Vi * t + 0.5 * t * t * a
where Sd is the current distance from the start position at current frame/moment/sum_of_deltas, Vi is the starting speed, and t is the time since the start.
With this, your decceleration is constant, but even if it is linear, your speed will accomodate to your constraints.
If you want a non-linear decceleration, you could find some non-linear interpolation method, and interpolate not acceleration, but simply position between two points.
location = non_linear_function(time);
The four constraints you give are one too many for a linear system (one with constant acceleration), where any three of the variables would suffice to compute the acceleration and thereby determine the fourth variables. However, the system is way under-specified for a completely general nonlinear system -- there may be uncountably infinite ways to change acceleration over time while satisfying all the constraints as given. Can you perhaps specify better along what kind of curve acceleration should change over time?
Using 0 index to mean "at the start", 1 to mean "at the end", and D for Delta to mean "variation", given a linearly changing acceleration
a(t) = a0 + t * (a1-a0)/Dt
where a0 and a1 are the two parameters we want to compute to satisfy all the various constraints, I compute (if there's been no misstep, as I did it all by hand):
DV = Dt * (a0+a1)/2
Ds = Dt * (V0 + ((a1-a0)/6 + a0/2) * Dt)
Given DV, Dt and Ds are all given, this leaves 2 linear equations in the unknowns a0 and a1 so you can solve for these (but I'm leaving things in this form to make it easier to double check on my derivations!!!).
If you're applying the proper formulas at every step to compute changes in space and velocity, it should make no difference whether you compute a0 and a1 once and for all or recompute them at every step based on the remaining Dt, Ds and DV.
If you're trying to simulate a time-dependent acceleration in your equations, it just means that you should assume that. You have to integrate F = ma along with the acceleration equations, that's all. If acceleration isn't constant, you just have to solve a system of equations instead of just one.
So now it's really three vector equations that you have to integrate simultaneously: one for each component of displacement, velocity, and acceleration, or nine equations in total. The force as a function of time will be an input for your problem.
If you're assuming 1D motion you're down to three simultaneous equations. The ones for velocity and displacement are both pretty easy.
In real life, a car's stopping ability depends on the pressure on the brake pedal, any engine braking that's going on, surface conditions, and such: also, there's that "grab" at the end when the car really stops. Modeling that is complicated, and you're unlikely to find good answers on a programming website. Find some automotive engineers.
Aside from that, I don't know what you're asking for. Are you trying to determine a braking schedule? As in there's a certain amount of deceleration while coasting, and then applying the brake? In real driving, the time is not usually considered in these maneuvers, but rather the distance.
As far as I can tell, your problem is that you aren't asking for anything specific, which suggests that you really haven't figured out what you actually want. If you'd provide a sample use for this, we could probably help you. As it is, you've provided the bare bones of a problem that is either overdetermined or way underconstrained, and there's really nothing we can do with that.
if you need to go from 10m/s to 0m/s in 1m with linear acceleration you need 2 equations.
first find the time (t) it takes to stop.
v0 = initial velocity
vf = final velocity
x0 = initial displacement
xf = final displacement
a = constant linear acceleration
(xf-x0)=.5*(v0-vf)*t
t=2*(xf-x0)/(v0-vf)
t=2*(1m-0m)/(10m/s-0m/s)
t=.2seconds
next to calculate the linear acceleration between x0 & xf
(xf-x0)=(v0-vf)*t+.5*a*t^2
(1m-0m)=(10m/s-0m/s)*(.2s)+.5*a*((.2s)^2)
1m=(10m/s)*(.2s)+.5*a*(.04s^2)
1m=2m+a*(.02s^2)
-1m=a*(.02s^2)
a=-1m/(.02s^2)
a=-50m/s^2
in terms of gravity (g's)
a=(-50m/s^2)/(9.8m/s^2)
a=5.1g over the .2 seconds from 0m to 10m
Problem is either overconstrained or underconstrained (a is not constant? is there a maximum a?) or ambiguous.
Simplest formula would be a=(Vf-V0)/t
Edit: if time is not constrained, and distance s is constrained, and acceleration is constant, then the relevant formulae are s = (Vf+V0)/2 * t, t=(Vf-V0)/a which simplifies to a = (Vf2 - V02) / (2s).