The above image is a sample of my project. Am creating a road map using Rectangular Splines.
There are approximately 2000 such rectangular spline.
As seen in the above image Stage 1 is the initial Structure and stage 3 is the final Outcome
I have used Attach to combine all the splines.
The thing I am trying to achieve is I want to convert The spline in one and Remove the inner edges to Optimize the Game Performance.
Is there any way to do that. Doing manually is very tough and there are nearly 30 level each containing 2000 splines
OK. Seems like this "Rectangular Spline" is just a spline that shapes like a rectangle. What you want to do can be achieved in the following ways:
1) Break up all the rectangular splines into straight lines. Your rectangular splines most likely are just degree 1 B-splines, so it should be quite easy to break them up.
2) Find identical straight line segments. If you found two identical line segments, delete both of them.
3) You will be left with many straight line segments that form the outside perimeter of those 3 regions as shown in your picture stage 3. You will need to sort all these line segments into 3 loops and join the line segments in each loop back to a degree 1 B-spline.
Related
I need to find out what the degrees of freedom are between two arbitrary geometries that may be linked to eachother. for instance a hinge consisting of two parts. I can simulate the motion of the two parts, and I figured that if I fix one of the parts in place, i can deduce what the axes and point of rotation is for the second moving part is from the transformation in each timestep.
I run into some difficulties calculating this (my vector algebra is ok, my (numpy) math skills less so)
How I see it is I have two 4x4 transformation matrices for each timestep, the previous position/orientation of the moving part (A) and the current position/orientation (A')
then the point of rotation can be found by by calculating the transformation matrix B that transforms A into A' which is I believe
B = inverse(A) * A'
and then find the point that does not change under transformation by B:
x = Bx
Is my thinking correct and if so, how do I solve this equation?
I need to draw an enclosing polygon of a group of rectangles that are placed next to each other.
Let's think of text fields that share at least one edge (or part of it) with at least one of the other rectangles.
I can get the rectangles points coordinates, and so I basically have any data I need about them.
Can you think of a simple algorithm / procedure to draw a polygon (connected straight paths) around these objects.
Here's a demonstration of different potential cases (A, B, C, etc...). In example A I also drew a blue polygon which is the path that I need to draw, outlining the group of rectangles.
I've read here about convex hull and stuff like that but really, this looks like a far simpler problem.
One (beginning of) solution I thought of was that the points I actually need to draw through are only ones that are not shared by any pair of rectangles, meaning points that are vertices of more than one rectangle are redundant. What I couldn't find out was the order by which I need to draw lines from one to the next.
I currently work on objective c, but any other language or algo would be appreciated, including pseudo.
Thanks!
IMHO it should be like this. Make a list of edged and see if some are overlaying: This should be simple if the rectangles are aligned with the x,y axis. You just find the edges that have the vertexes on the same x or y and the other coordinates need to be in between. After this the remaining edges should form the outline.
Another method to find common edges is to break all rectangles along each x and y axis where you have vertices. This should look as if you are growing all lines to infinity. After this all common edges will have common vertices and can be eliminated.
You have two rows, and three different y-values. Let's say y0 is the top of the thing, y2 is the bottom end, and y1 marks the middle between both rows.
Each row has a maximum and a minimum x-value, let's say the top-row goes from x0_min to x0_max, and the bottom row from x2_min to x2_max. Given those values you just draw around the thing:
(x0_min,y0)->
(x0_max,y0)->
(x0_max,y1)->
(x2_max,y1)->
(x2_max,y2)->
(x2_min,y2)->
(x2_min,y1)->
(x0_min,y1)->
(x0_min,y0)
I have some Kinect data of somebody standing (reasonably) still and performing sets of punches. I am given it in the format of an x,y,z co-ordinate for each joint of which they are 20, so I have 60 data points per frame.
I'm trying to perform a classification task on the punches however I'm having some problems normalising my data. As you can see from the graph there are sections with much higher 'amplitude' than the others, my belief is that this is due to how close that person was to the kinect sensor when the readings were taken. (The graph is actually the first principal coefficient obtained by PCA for each frame, multiple sequences of the same punch are strung together in this graph)
Looking back at the data files it looks like those that are 'out' have a z co-ordinate (depth from sensor) of ~2.7 where as the others tent to hover around 3.3-3.6.
How can I perform a normalization with the depth values to make them closer to each other for each sequence? I've already tried differentiation to get the velocity, although it helps to normalise the output actually ends up too similar and makes it very hard to classify.
Edit: I should mention I am already using a normalization method by subtracting the hip position from each joint in an attempt to make the co-ordinates relative.
The Kinect can output some strange values when the person that is tracked is standing near the edges of the view of the Kinect. I would either completly ignore these data or just replace the data with an average of the previous 2 and next 2.
For example:
1,2,1,12,1,2,3
Replace 12 with (2 + 1 + 1 + 2) / 4 = 1.5
You can basically do this with the whole array of values you have, this way you have a more normalised line/graph.
You can also use the clippedEdges value to determine if one or more joints is outside the view.
I want to layer (superimpose) one column graph on another in Excel. So it would be like a stacked column graph, except that each column for a given category on the x-axis would have its origin at 0 on the y-axis. My data are before and after scores. By layering the columns instead of putting them side-by-side, it would be easier to visualize the magnitude and direction of the difference between the two scores. I've seen this done with R, but can't find examples in Excel. Anyone ever attempted this?
I tried the 3D suggestion and it worked. But the other answer I discovered was to choose a Clustered Column graph and click 'Format Data Series' and change the 'overlap' percentage to 100%. I'm using a Mac so it's slightly different, but the person who helped me with this was on a PC and I've used PC's mainly. What I ended up discovering is that using 90% looked quite nice, but 100% will achieve what you're looking for.
I did the same thing for my thesis presentation. It's a little tricky and I made it by myself. To do it, you have to create a 3D bar graph (not a stacked one), in which your columns are put in front of each other. You have to make sure that all the taller columns in each X cell are behind the shorter columns in that cell on the X axis.
Once you created that graph, you can rotate the 3D graph in a way that it looks like a 2D graph (by resetting the axes values to zero). Now you have a bar graph, in which every bar has different columns and all of the columns start at zero. ;)
Short answer: Change the post score to (post - pre), then you can proceed with making the stacked bar chart.
Long and correct answer: DO NOT DO THIS. Clustered bar chart is much better because:
The visual line for comparison is the same line anyway, you're not facilitating the understanding in any means.
Any kind of overlapping of the bars conceals the area of the post-score, which induces visual distortion. A pre-score of 10 and a post score of 20 should have a column area ratio of 1:2. But if you completely overlap them, it'd be reduced to 1:1. Partial overlapping is equally problematic.
I'm stuck with the following problem and I hope I can explain it coherent.
So, I have a number (about 10) of descrete positions on a coordinate system.
Now, I want to analyse data from a program where user could label each point as somethingA and somethingB.
I extracted the data points for each class. So I have about 60 points for the somethingA class and a little bit less for the other class. One class stands for good points and one for bad points. I want to find the positions which have the most good/bad labels. I do that with machine learning algorithms, I just want to visualize this with plots.
I now want to plot those points. So I make one plot per class. But since in every class every point occurs at least once, the two plots would look exactly the same.
But, the amount of occurences has a different distribution thoughout the positions.
Maybe point A has 20 occurences in class A and 1 in class B, both plots would look the same.
So, my question is: How can I take the number of occurences for points into account when plotting scatters in Matplotlib?
Either with different colors (like a heatmap?) maybe with a cool legend.
Or with different sizes (e.g. higher amount = bigger cirlce).
Any help would be appreciated!
I don't know if this helps you but I have had a problem where I wanted a scatterplot to reflect both positions as well as two variables that were attributed to the data points.
Since size and color in the scatter function do not allow variables themselves, meaning one has to specify color code and size in the usual way, meaning sth like
ax.scatter(..., c=whatEverFunction, s=numberOfOccurences, ...)
did not work for me.
what I did was to bin the values of the two variables I wanted to visualize. In my case the variable nodeMass and another variable.
for i in range(Number):
mask[i] = False
if(lowerBound1<variableOne[i]<upperBound1):
mask[i] = True & pmask[i]
if len(positionX[mask])>0:
ax.scatter(positionX[mask], positionY[mask], positionZ[mask],C='#424242',s=10, edgecolors='none')
for i in range(Number):
mask[i] = False
if(lowerBound2<variableOne[i]<upperBound2):
mask[i] = True & pmask[i]
if len(positionX[mask])>0:
ax.scatter(positionX[mask], positionY[mask], positionZ[mask],c='#9E0050',s=25,edgecolors='none')
I know it is not very elegant but it worked for me. I had to make as many for loops as I had bins in my variables. With if-querys and the masks I could at least avoid redundant or 'unreadable' plots.