What's a good mechanism to move from global state to patterns like dependency injection? - oop

Background
I'm in the process of reworking and refactoring a huge codebase which was written with neither testability nor maintainability in mind. There is a lot of global/static state going on. A function needs a database connection, so it just conjures one up using a global static method: $conn = DatabaseManager::getConnection($connName);. Or it wants to load a file, so it does it using $fileContents = file_get_contents($hardCodedFilename);.
Much of this code does not have proper tests and has only ever been tested directly in production. So the first thing I am intending on doing is write unit tests, to ensure the functionality is correct after refactoring. Now sadly code like the examples above is barely unit testable, because none of the external dependencies (database connections, file handles, ...) can be properly mocked.
Abstraction
To work around this I have created very thin wrappers around for example the system functions, that can be used in places where non-mockable function calls were used before. (I'm giving these examples in PHP, but I assume they are applicable for any other OOP language as well. Also this is a highly shortened example, in reality I am dealing with much larger classes.)
interface Time {
/**
* Returns the current time in seconds since the epoch.
* #return int for example: 1380872620
*/
public function current();
}
class SystemTime implements Time {
public function current() {
return time();
}
}
These can be used in the code like so:
class TimeUser {
/**
* #var Time
*/
private $time;
/**
* Prints out the current time.
*/
public function tellsTime() {
// before:
echo time();
// now:
echo $this->time->current();
}
}
Since the application only depends on the interface, I can replace it in a test with a mocked Time instance, which for example allows to predefine the value to return for the next call to current().
Injection
So far so basic. My actual question is how to get the proper instances into the classes that depend upon them. From my Understanding of Dependency injection, services are meant to be passed down by the application into the components that need them. Usually these services would be created in a {{main()}} method or at some other starting point and then strung along until they reach the components where they are needed.
This model likely works well when creating a new application from scratch, but for my situation it's less than ideal, since I want to move gradually to a better design. So I've come up with the following pattern, which automatically provides the old functionality while leaving me with the flexibility of substituting services.
class TimeUser {
/**
* #var Time
*/
private $time;
public function __construct(Time $time = null) {
if ($time === null) {
$time = new SystemTime();
}
$this->time = $time;
}
}
A service can be passed into the constructor, allowing for mocking of the service in a test, yet during "regular" operation, the class knows how to create its own collaborators, providing a default functionality, identical to what was needed before.
Problem
I've been told that this approach is unclean and subverts the idea of dependency injection. I do understand that the true way would be to pass down dependencies, like outlined above, but I don't see anything wrong with this simpler approach. Keep in mind also that this is a huge system, where potentially hundreds of services would need to be created up front (Service locator would be an alternative, but for now I am trying to go this other direction).
Can someone shed some light onto this issue and provide some insight into what would be a better way to achieve a refactoring in my case?

I think You've made first good step.
Last year I was on DutchPHP and there was a lecture about refactoring, lecturer described 3 major steps of extracting responsibilyty froma god class:
Extract code to private method (it should be simple copy paste since
$this is the same)
Extract code to separate class and pull
dependency
Push dependency
I think you are somewhere between 1st and 2nd step. You have a backdoor for unit tests.
Next thing according to above algorithm is to create some static factory (lecturer named it ApplicationFactory) which will be used instead of creation of instance in TimeUser.
ApplicationFactory is some kind of ServiceLocator pattern. This way you will inverse dependency (according to SOLID principle).
If you are happy with that you should remove passing Time instance into constructor and use ServiceLocator only (without backdoor for unit tests, You should stub service locator)
If you are not, then You have to find all places where TimeUser is being instantiated and inject Time implemenation:
new TimeUser(ApplicationFactory::getTime());
After some time yours ApplicationFactory will become very big. Then You have to made a decision:
Split it into smaller factories
Use some dependency injection container (Symfony DI, AurynDI or
something like that)
Currently my team is doing something similar. We are extracting responsibilities to seperate classes and inject them. We have an ApplicationFactory but we use it as service locator at as hight level as possible so classes bellow gets all dependencies injected and don't know anything about ApplicationFactory. Our application factory is big and now we are preparing to replace it with SymfonyDI.

You asked for a good mechanism to do this.
You've described some stages you might force the program to go through to accomplish this, but you are still apparantly planning to do this by hand at apparantly a very high cost.
If you really want to get this done on a huge code base, you might consider automating the steps using a program transformation engine: http://en.wikipedia.org/wiki/Program_transformation
Such a tool can let you write explicit rules for modifying code. Done right, this can make code changes reliably. That doesn't minimize your need for testing, but can let you spend more time writing tests and less time hand-changing the code (erroneously).

Related

How do you test private methods, classes, and modules?

I have looked at other discussions about this topic (on StackOverflow) however the other questions seem to be language specific whereas this is not language specific and I'm considering no longer using private methods, classes, and modules.
I want to test my private methods, classes, and modules so that I can more easily locate bugs. To allow me to do this I'm considering no longer using private methods, classes, and modules for two reasons, (1) I see no reasonable way of testing a private method, class, or module without injecting test code or using some sort of "magic" and (2) to improve code reuse. Note that I'm not considering no longer using private variables and properties because data needs protecting and does not provide behaviour therefore it does not need to be public during testing.
As a lame example, if you're writing a module called OneOperations that has two public methods addOne and subtractOne, and two private methods add and subtract. If you were not allowing yourself to have private methods you would put the two private methods into another module (basicOperations) where they are public and import those methods inside the OneOperations module. From this you should now be able to write testing code for all the methods in both modules without injecting code. An advantage of this is that the methods add and subtract can now be used in other modules by importing the basicOperations module (2 - improving code reuse).
I have a feeling this a bad idea, but I lack the real world experience to justify not doing this, which is why I've posted this question on StackOverflow.
So, how do you test your private methods, classes, and modules? Is not writing private methods, modules, and classes a potential solution?
1) Like in many other answers on this topic, the main question is why would you want to test your private methods? The purpose of a class is to provide some functionality to its clients. If you have comprehensive unit tests that prove that the public interface of this class behaves correctly, why do you care what it's doing in its private methods?
2) Your idea of not having private methods at all seems like cutting your leg off. For small projects it may be possible to have every tiny behaviour well separated and tested. But for large projects it's an overkill. What matters, is the domain logic behaving correctly.
Consider for example a method:
public double getDistanceSquared(Point other)
{
return getDifferenceSquared(this.x, other.x)
+ getDifferenceSquared(this.y, other.y);
}
private double getDifferenceSquared(double v1, double v2)
{
return (v1 - v2)*(v1 - v2);
}
Ad1) Does it really make sense to unit test getDifferenceSquared method, if getDistanceSquared returns correct results for all test cases?
Ad2) Creating a separate class for calculating squared distance between doubles - in case there is only one place when it'll be used leads to a swarm of tiny classes, with millions of tests. Also, constructors of your domain classes will accept like 10 different interfaces for every tiny thing they're doing internally.
Maintaining all this is a lot of unnecessary work. Imagine that you would like to change the method of calculating the distance (maybe use some precomputed values). The behaviour of getDistanceSquared would not change. But you would have to change all of the tests of getDifferenceSquared even though you shouldn't have to care how is the distance being calculated, as long as it's calculated correctly.
Diving into minor details when it's not necessary makes you forgot what you're really doing - you lose the "big picture view". Value your time, and focus on important problems.
As a side note, also - the main concern of unit tests is not "locating bugs" as you suggest. They impose a clean design, provide an always up-to-date documentation of your code's behaviour and allow convenient refactoring giving you flexibility. Additionally they assure you that the code is working as you expect it to.
http://artofunittesting.com/definition-of-a-unit-test/
http://en.wikipedia.org/wiki/Unit_testing#Benefits
There is another way to look at this, which is how do you generate a private method?
If we are following the TDD process properly, then the first thing we write is the test. At this point the test should contain all of our code, e.g.
public void ShouldAddTwoNumbers()
{
(1 + 1).ShouldEqual(2);
}
Yes, that looks appalling. But consider what happens as we write is some more tests.
public void ShouldAddTwoMoreNumbers()
{
(2 + 2).ShouldEqual(4);
}
Now we have something to reactor, so it can become
public void ShouldAddTwoNumbers()
{
Add(1, 1).ShouldEqual(2);
}
public void ShouldAddTwoMoreNumbers()
{
Add(2, 2).ShouldEqual(4);
}
private int Add(int a, int b)
{
return a+b;
}
So now we have a private method that we can test inside our test class. It's only when you complete further refactoring to move the code out into your application, that the private becomes an issue. Most automated refactoring tools will offer you the option of changing the methods signature at this point, so that the private method is still accessible, because its not private.
(There is a fabulous exercise called TDD as if you mean it by Keith Braithwaite which I've just paraphrased above)
However, this isn't the end of our refactorings and development. One thing that we should be doing as we write and refactor our tests is to delete old tests, for example when functionality is duplicated. Another is to extract new methods so we don't repeat ourselves. Both of these can lead to scenarios where we have private methods back in the non-test code base.
So my advice is to be pragmatic, make the best decision you can for the code that you have in front of you. I wouldn't advise not creating private methods, but I would instead look at the factors that lead you to create them.

Modular design and intermodule references

I'm not so sure the title is a good match for this question I want to put on the table.
I'm planning to create a web MVC framework as my graduation dissertation and in a previous conversation with my advisor trying to define some achivements, he convinced me that I should choose a modular design in this project.
I already had some things developed by then and stopped for a while to analyze how much modular it would be and I couldn't really do it because I don't know the real meaning of "modular".
Some things are not very cleary for me, like for example, just referencing another module blows up the modularity of my system?
Let's say I have a Database Access module and it OPTIONALY can use a Cache module for storing results of complex queries. As anyone can see, I at least will have a naming dependency for the cache module.
In my conception of "modular design", I can distribute each component separately and make it interact with others developed by other people. In this case I showed, if someone wants to use my Database Access module, they will have to take the Cache as well, even if he will not use it, just for referencing/naming purposes.
And so, I was wondering if this is really a modular design yet.
I came up with an alternative that is something like creating each component singly, without don't even knowing about the existance of other components that are not absolutely required for its functioning. To extend functionalities, I could create some structure based on Decorators and Adapters.
To clarify things a little bit, here is an example (in PHP):
Before
interface Cache {
public function isValid();
public function setValue();
public function getValue();
}
interface CacheManager {
public function get($name);
public function put($name, $value);
}
// Some concrete implementations...
interface DbAccessInterface {
public doComplexOperation();
}
class DbAccess implements DbAccessInterface {
private $cacheManager;
public function __construct(..., CacheManager $cacheManager = null) {
// ...
$this->cacheManager = $cacheManager;
}
public function doComplexOperation() {
if ($this->cacheManager !== null) {
// return from cache if valid
}
// complex operation
}
}
After
interface Cache {
public function isValid();
public function setValue();
public function getValue();
}
interface CacheManager {
public function get($name);
public function put($name, $value);
}
// Some concrete implementations...
interface DbAccessInterface {
public function doComplexOperation();
}
class DbAccess implements DbAccessInterface {
public function __construct(...) {
// ...
}
public function doComplexQuery() {
// complex operation
}
}
// And now the integration module
class CachedDbAcess implements DbAccessInterface {
private $dbAccess;
private $cacheManager;
public function __construct(DbAccessInterface $dbAccess, CacheManager $cacheManager) {
$this->dbAccess = $dbAccess;
$this->cacheManager = $cacheManager;
}
public function doComplexOperation() {
$cache = $this->cacheManager->get("Foo")
if($cache->isValid()) {
return $cache->getValue();
}
// Do complex operation...
}
}
Now my question is:
Is this the best solution? I should do this for all the modules that do not have as a requirement work together, but can be more efficient doing so?
Anyone would do it in a different way?
I have some more further questions involving this, but I don't know if this is an acceptable question for stackoverflow.
P.S.: English is not my first language, maybe some parts can get a little bit confuse
Some resources (not theoretical):
Nuclex Plugin Architecture
Python Plugin Application
C++ Plugin Architecture (Use NoScript on that side, they have some weird login policies)
Other SO threads (design pattern for plugins in php)
Django Middleware concept
Just referencing another module blows up the modularity of my system?
Not necessarily. It's a dependency. Having a dependencies is perfectly normal. Without dependencies modules can't interact with each other (unless you're doing such interaction indirectly which in general is a bad practice since it hides dependencies and complicates the code). Modular desing implies managing of dependencies, not removing them.
One tool - is using interfaces. Referencing module via interface makes a so called soft dependency. Such module can accept any implementation of an interface as a dependency so it is more independant and as a result - more maintainable.
The other tool - designing modules (and their interfaces) that have only single responcibility. This also makes them more granular, independant and maintainable.
But there is a line which you should not cross - blindly applying these tools may leed to a too modular and too generic desing. Making things too granular makes the whole system more complex. You should not solve universe problems, making generic modules, that all developers can use (unless it is your goal). First of all your system should solve your domain tasks and make things generic enough, but not more than that.
I came up with an alternative that is something like creating each component singly, without don't even knowing about the existance of other components that are not absolutely required for its functioning
It is great if you came up with this idea by yourself. The statement itself, is a key to modular programming.
Plugin architecture is the best in terms of extensibility, but imho it is hard to maintenance especially in intra application. And depending the complexity of plugin architecture, it can make your code more complex by adding plugin logics, etc.
Thus, for intra modular design, I choose the N-Tier, interface based architecture. Basically, the architecture relays on those tiers:
Domain / Entity
Interface [Depend on 1]
Services [Depend on 1 and 2]
Repository / DAL [Depend on 1 and 2]
Presentation Layer [Depend on 1,2,3,4]
Unfortunately, I don't think this is achieveable neatly in php projects as it need separated project / dll references in each tier. However, following the architecture can help to modularize the application.
For each modules, we need to do interface-based design. It can help to enhance the modularity of your code, because you can change the implementation later, but still keep the consumer the same.
I have provided an answer similiar to this interface-based design, at this stackoverflow question.
Lastly but not least, if you want to make your application modular to the UI, you can do Service Oriented Architecture. This is simply make your application as bunch of services, and then make the UI to consume the service. This design can help to separate your UI with your logic. You can later use different UI such as desktop app, but still use the same logic. Unfortunately, I don't have any reliable source for SOA.
EDIT:
I misunderstood the question. This is my point of view about modular framework. Unfortunately, I don't know much about Zend so I will give examples in C#:
It consist of modules, from the smallest to larger modules. Example in C# is you can using the Windows Form (larger) at your application, and also the Graphic (smaller) class to draw custom shapes in the screen.
It is extensible, or replaceable without making change to base class. In C# you can assign FormLoad event (extensible) to the Form class, inherit the Form or List class (extensible) or overridding form draw method to create a custom window graphic (replaceable).
(optional) it is easy to use. In normal DI interface design, we usually inject smaller modules into a larger (high level) module. This will require an IOC container. Refer to my question for detail.
Easy to configure, and does not involve any magical logic such as Service Locator Pattern. Search Service Locator is an Anti Pattern in google.
I don't know much about Zend, however I guess that the modularity in Zend can means that it can be extended without changing the core (replacing the code) inside framework.
If you said that:
if someone wants to use my Database Access module, they will have to take the Cache as well, even if he will not use it, just for referencing/naming purposes.
Then it is not modular. It is integrated, means that your Database Access module will not work without Cache. In reference of C# components, it choose to provide List<T> and BindingList<T> to provide different functionality. In your case, imho it is better to provide CachedDataAccess and DataAccess.

BDD and outside-in approach, how to start with testing

All,
I'm trying to grasp all the outside-in TDD and BDD stuff and would like you to help me to get it.
Let's say I need to implement Config Parameters functionality working as follows:
there are parameters in file and in database
both groups have to be merged into one parameters set
parameters from database should override those from files
Now I'd like to implement this with outside-in approach, and I stuck just at the beginning. Hope you can help me to get going.
My questions are:
What test should I start with? I just have sth as follows:
class ConfigurationAssemblerTest {
#Test
public void itShouldResultWithEmptyConfigurationWhenBothSourcesAreEmpty() {
ConfigurationAssembler assembler = new ConfigurationAssembler();
// what to put here ?
Configuration config = assembler.getConfiguration();
assertTrue(config.isEmpty());
}
}
I don't know yet what dependencies I'll end with. I don't know how I'm gonna write all that stuff yet and so on.
What should I put in this test to make it valid? Should I mock something? If so how to define those dependencies?
If you could please show me the path to go with this, write some plan, some tests skeletons, what to do and in what order it'd be super-cool. I know it's a lot of writing, so maybe you can point me to any resources? All the resources about outside-in approach I've found were about simple cases with no dependencies etc.
And two questions to mocking approach.
if mocking is about interactions and their verification, does it mean that there should not be state assertions in such tests (only mock verifications) ?
if we replace something that doesn't exist yet with mock just for test, do we replace it later with real version?
Thanks in advance.
Ok, that's indeed a lot of stuff. Let's start from the end:
Mocking is not only about 'interactions and their verification', this would be only one half of the story. In fact, you're using it in two different ways:
Checking, if a certain call was made, and eventually also checking the arguments of the call (this is the 'interactions and verification' part).
Using mocks to replace dependencies of the class-under-test (CUT), eventually setting up return values on the mock objects as required. Here, you use mock objects to isolate the CUT from the rest of the system (so that you can handle the CUT as an isolated 'unit', which sort of runs in a sandbox).
I'd call the first form dynamic or 'interaction-based' unit testing, it uses the Mocking frameworks call verification methods. The second one is more traditional, 'static' unit testing which asserts a fact.
You shouldn't ever have the need to 'replace something that doesn't exist yet' (apart from the fact that this is - logically seen - completely impossible). If you feel like you need to do this, then this is a clear indication that you're trying to make the second step before the first.
Regarding your notion of 'outside-in approach': To be honest, I've never heard of this before, so it doesn't seem to be a very prominent concept - and obviously not a very helpful one, because it seems to confuse things more than clarifying them (at least for the moment).
Now onto your first question: (What test should I start with?):
First things first - you need some mechanism to read the configuration values from file and database, and this functionality should be encapsulated in separate helper classes (you need, among other things, a clean Separation of concerns for effectively doing TDD - this usually is totally underemphasized when introducing TDD/BDD). I'd suggest an interface (e.g. IConfigurationReader) which has two implementations (one for the file stuff and one for the database, e.g. FileConfigurationReader and DatabaseConfigurationReader). In TDD (not necessarily with a BDD approach) you would also have corresponding test fixtures. These fixtures would cover test cases like 'What happens if the underlying data store contains no/invalid/valid/other special values?'. This is what I'd advice you to start with.
Only then - with the reading mechanism in operation and your ConfigurationAssembler class having the necessary dependencies - you would start to write tests for/implement the ConfigurationAssembler class. Your test then could look like this (Because I'm a C#/.NET guy, I don't know the appropriate Java tools. So I'm using pseudo-code here):
class ConfigurationAssemblerTest {
#Test
public void itShouldResultWithEmptyConfigurationWhenBothSourcesAreEmpty() {
IConfigurationReader fileConfigMock = new [Mock of FileConfigurationReader];
fileConfigMock.[WhenAskedForConfigValues].[ReturnEmpty];
IConfigurationReader dbConfigMock = new [Mock of DatabaseConfigurationReader];
dbConfigMock.[WhenAskedForConfigValues].[ReturnEmpty];
ConfigurationAssembler assembler = new ConfigurationAssembler(fileConfigMock, dbConfigMock);
Configuration config = assembler.getConfiguration();
assertTrue(config.isEmpty());
}
}
Two things are important here:
The two reader objects are injected to the ConfigurationAssembler from outside via its constructor - this technique is called Dependency Injection. It is very helpful and important architectural principle, which generally leads to a better and cleaner architecture (and greatly helps in unit testing, especially when using mock objects).
The test now asserts exactly what it states: The ConfigurationAssembler returns ('assembles') an empty config when the underlying reading mechanisms on their part return an empty result set. And because we're using mock objects to provide the config values, the test runs in complete isolation. We can be sure that we're testing only the correct functioning of the ConfigurationAssembler class (its handling of empty values, namely), and nothing else.
Oh, and maybe it's easier for you to start with TDD instead of BDD, because BDD is only a subset of TDD and builds on top of the concepts of TDD. So you can only do (and understand) BDD effectively when you know TDD.
HTH!

Alternatives for the singleton pattern?

I have been a web developer for some time now using ASP.NET and C#, I want to try and increase my skills by using best practices.
I have a website. I want to load the settings once off, and just reference it where ever I need it. So I did some research and 50% of the developers seem to be using the singleton pattern to do this. And the other 50% of the developers are ant-singleton. They all hate singletons. They recommend dependency injection.
Why are singletons bad? What is best practice to load websites settings? Should they be loaded only once and referenced where needed? How would I go about doing this with dependency injection (I am new at this)? Are there any samples that someone could recommend for my scenario? And I also would like to see some unit test code for this (for my scenario).
Thanks
Brendan
Generally, I avoid singletons because they make it harder to unit test your application. Singletons are hard to mock up for unit tests precisely because of their nature -- you always get the same one, not one you can configure easily for a unit test. Configuration data -- strongly-typed configuration data, anyway -- is one exception I make, though. Typically configuration data is relatively static anyway and the alternative involves writing a fair amount of code to avoid the static classes the framework provides to access the web.config anyway.
There are a couple of different ways to use it that will still allow you to unit test you application. One way (maybe both ways, if your singleton doesn't lazily read the app.cofnig) is to have a default app.config file in your unit test project providing the defaults required for your tests. You can use reflection to replace any specific values as needed in your unit tests. Typically, I'd configure a private method that allows the private singleton instance to be deleted in test set up if I do make changes for particular tests.
Another way is to not actually use the singleton directly, but create an interface for it that the singleton class implements. You can use hand injection of the interface, defaulting to the singleton instance if the supplied value is null. This allows you to create a mock instance that you can pass to the class under test for your tests, but in your real code use the singleton instance. Essentially, every class that needs it maintains a private reference to the singleton instance and uses it. I like this way a little better, but since the singleton will be created you may still need the default app.config file, unless all of the values are lazily loaded.
public class Foo
{
private IAppConfiguration Configuration { get; set; }
public Foo() : this(null) { }
public Foo( IAppConfiguration config )
{
this.Configuration = config ?? AppConfiguration.Instance;
}
public void Bar()
{
var value = this.Config.SomeMaximum;
...
}
}
There's a good discussion of singleton patterns, and coding examples here... http://en.wikipedia.org/wiki/Singleton_pattern See also here... http://en.wikipedia.org/wiki/Dependency_injection
For some reason, singletons seem to divide programmers into strong pro- and anti- camps. Whatever the merits of the approach, if your colleagues are against it, it's probably best not to use one. If you're on your own, try it and see.
Design Patterns can be amazing things. Unfortunately, the singleton seems to stick out like a sore thumb and in many cases can be considered an anti-pattern (it promotes bad practices). Bizarely, the majority of developers will only know one design pattern, and that is the singleton.
Ideally your settings should be a member variable in a high level location, for example the application object which owns the webpages you are spawning. The pages can then ask the app for the settings, or the application can pass the settings as pages are constructed.
One way to approach this problem, is to flog it off as a DAL problem.
Whatever class / web page, etc. needs to use config settings should declare a dependency on an IConfigSettingsService (factory/repository/whatever-you-like-to-call-them).
private IConfigSettingsService _configSettingsService;
public WebPage(IConfigSettingsService configSettingsService)
{
_configSettingsService = configSettingsService;
}
So your class would get settings like this:
ConfigSettings _configSettings = _configSettingsService.GetTheOnlySettings();
the ConfigSettingsService implementation would have a dependency which is Dal class. How would that Dal populate the ConfigSettings object? Who cares.
Maybe it would populate a ConfigSettings from a database or .config xml file, every time.
Maybe it do that the first time but then populate a static _configSettings for subsequent calls.
Maybe it would get the settings from Redis. If something indicates the settings have changed then the dal, or something external, can update Redis. (This approach will be useful if you have more than one app using the settings.
Whatever it does, your only dependency is a non-singleton service interface. That is very easy to mock. In your tests you can have it return a ConfigSettings with whatever you want in it).
In reality it would more likely be MyPageBase which has the IConfigSettingsService dependency, but it could just as easily be a web service, windows service, MVC somewhatsit, or all of the above.

How can I avoid global state?

So, I was reading the Google testing blog, and it says that global state is bad and makes it hard to write tests. I believe it--my code is difficult to test right now. So how do I avoid global state?
The biggest things I use global state (as I understand it) for is managing key pieces of information between our development, acceptance, and production environments. For example, I have a static class named "Globals" with a static member called "DBConnectionString." When the application loads, it determines which connection string to load, and populates Globals.DBConnectionString. I load file paths, server names, and other information in the Globals class.
Some of my functions rely on the global variables. So, when I test my functions, I have to remember to set certain globals first or else the tests will fail. I'd like to avoid this.
Is there a good way to manage state information? (Or am I understanding global state incorrectly?)
Dependency injection is what you're looking for. Rather than have those functions go out and look for their dependencies, inject the dependencies into the functions. That is, when you call the functions pass the data they want to them. That way it's easy to put a testing framework around a class because you can simply inject mock objects where appropriate.
It's hard to avoid some global state, but the best way to do this is to use factory classes at the highest level of your application, and everything below that very top level is based on dependency injection.
Two main benefits: one, testing is a heck of a lot easier, and two, your application is much more loosely coupled. You rely on being able to program against the interface of a class rather than its implementation.
Keep in mind if your tests involve actual resources such as databases or filesystems then what you are doing are integration tests rather than unit tests. Integration tests require some preliminary setup whereas unit tests should be able to run independently.
You could look into the use of a dependency injection framework such as Castle Windsor but for simple cases you may be able to take a middle of the road approach such as:
public interface ISettingsProvider
{
string ConnectionString { get; }
}
public class TestSettings : ISettingsProvider
{
public string ConnectionString { get { return "testdatabase"; } };
}
public class DataStuff
{
private ISettingsProvider settings;
public DataStuff(ISettingsProvider settings)
{
this.settings = settings;
}
public void DoSomething()
{
// use settings.ConnectionString
}
}
In reality you would most likely read from config files in your implementation. If you're up for it, a full blown DI framework with swappable configurations is the way to go but I think this is at least better than using Globals.ConnectionString.
Great first question.
The short answer: make sure your application is a function from ALL its inputs (including implicit ones) to its outputs.
The problem you're describing doesn't seem like global state. At least not mutable state. Rather, what you're describing seems like what is often referred to as "The Configuration Problem", and it has a number of solutions. If you're using Java, you may want to look into light-weight injection frameworks like Guice. In Scala, this is usually solved with implicits. In some languages, you will be able to load another program to configure your program at runtime. This is how we used to configure servers written in Smalltalk, and I use a window manager written in Haskell called Xmonad whose configuration file is just another Haskell program.
An example of dependency injection in an MVC setting, here goes:
index.php
$container = new Container();
include_file('container.php');
container.php
container.add("database.driver", "mysql");
container.add("database.name","app");
...
$container.add(new Database($container->get('database.driver', "database.name")), 'database');
$container.add(new Dao($container->get('database')), 'dao');
$container.add(new Service($container->get('dao')));
$container.add(new Controller($container->get('service')), 'controller');
$container.add(new FrontController(),'frontController');
index.php continues here:
$frontController = $container->get('frontController');
$controllerClass = $frontController->getController($_SERVER['request_uri']);
$controllerAction = $frontController->getAction($_SERVER['request_uri']);
$controller = $container->get('controller');
$controller->$action();
And there you have it, the controller depends on a service layer object which depends on
a dao(data access object) object which depends on a database object with depends on the
database driver, name etc