Cocoa blocks as strong pointers vs copy - objective-c

I did work several times with blocks as with pointers to which i had strong reference
I heard that you should use copy, but what is the implication in working with blocks as pointers and not with the raw object?
I never got a complain from the compiler, that i should not use
#property (nonatomic, strong) MyBlock block;
but should use
#property (nonatomic, copy) MyBlock block;
as far as i know, the block is just an object, so why to preferrer copy anyway?

Short Answer
The answer is it is historical, you are completely correct that in current ARC code there is no need to use copy and a strong property is fine. The same goes for instance, local and global variables.
Long Answer
Unlike other objects a block may be stored on the stack, this is an implementation optimisation and as such should, like other compiler optimisations, not have direct impact on the written code. This optimisation benefits a common case where a block is created, passed as a method/function argument, used by that function, and then discarded - the block can be quickly allocated on the stack and then disposed of without the heap (dynamic memory pool) being involved.
Compare this to local variables, which (a) created on the stack, (b) are automatically destroyed when the owning function/method returns and (c) can be passed-by-address to methods/functions called by the owning function. The address of a local variable cannot be stored and used after its owning function/method has return - the variable no longer exists.
However objects are expected to outlast their creating function/method (if required), so unlike local variables they are allocated on the heap and are not automatically destroyed based on their creating function/method returning but rather based on whether they are still needed - and "need" here is determined automatically by ARC these days.
Creating a block on the stack may optimise a common case but it also causes a problem - if the block needs to outlast its creator, as objects often do, then it must be moved to the heap before its creators stack is destroyed.
When the block implementation was first released the optimisation of storing blocks on the stack was made visible to programmers as the compiler at that time was unable to automatically handle moving the block to the heap when needed - programmers had to use a function block_copy() to do it themselves.
While this approach might not be out-of-place in the low-level C world (and blocks are C construct), having high-level Objective-C programmers manually manage a compiler optimisation is really not good. As Apple released newer versions of the compiler improvements where made. Early on it programmers were told they could replace block_copy(block) with [block copy], fitting in with normal Objective-C objects. Then the compiler started to automatically copy blocks off stack as needed, but this was not always officially documented.
There has been no need to manually copy blocks off the stack for a while, though Apple cannot shrug off its origins and refers to doing so as "best practice" - which is certainly debatable. In the latest version, Sept 2014, of Apple's Working with Blocks, they stated that block-valued properties should use copy, but then immediately come clean (emphasis added):
Note: You should specify copy as the property attribute, because a block needs to be copied to keep track of its captured state outside of the original scope. This isn’t something you need to worry about when using Automatic Reference Counting, as it will happen automatically, but it’s best practice for the property attribute to show the resultant behavior.
There is no need to "show the resultant behavior" - storing the block on the stack in the first place is an optimisation and should be transparent to the code - just like other compiler optimisations the code should gain the performance benefit without the programmer's involvement.
So as long as you use ARC and the current Clang compilers you can treat blocks like other objects, and as blocks are immutable that means you don't need to copy them. Trust Apple, even if they appear to be nostalgic for the "good old days when we did things by hand" and encourage you to leave historical reminders in your code, copy is not needed.
Your intuition was right.

You are asking about the ownership modifier for a property. This affects the synthesized (or auto-synthesized) getter and/or setter for the property if it is synthesized (or auto-synthesized).
The answer to this question will differ between MRC and ARC.
In MRC, property ownership modifiers include assign, retain, and copy. strong was introduced with ARC, and when strong is used in MRC, it is synonymous with retain. So the question would be about the difference between retain and copy, and there is a lot of difference, because copy's setter saves a copy of the given value.
Blocks need to be copied to be used outside the scope where it was created (with a block literal). Since your property will be storing the value as an instance variable that persists across function calls, and it's possible that someone will assign an unoccupied block from the scope where it was created, the convention is that you must copy it. copy is the right ownership modifier.
In ARC, strong makes the underlying instance variable __strong, and copy also makes it __strong and adds copying semantics to the setter. However, ARC also guarantees that whenever a value is saved into a __strong variable of block-pointer type, a copy is done. Your property has type MyBlock, which I assume is a typedef for a block pointer type. Therefore, a copy will still be done in the setter if the ownership qualifier were strong. So, in ARC, there is no difference between using strong and copy for this property.
If this declaration might be used in both MRC and ARC though (e.g. a header in a library), it would be a good idea to use copy so that it works correctly in both cases.

what is the implication in working with blocks as pointers and not with the raw object?
You are never using the raw value, you always have a pointer to a block: a block is an object.
Looking at your specific example, I am assuming you want to keep the block around, "so why to preferrer copy anyway"enter code here? Well, it's a matter of safety (this example is taken from Mike Ash blog). Since blocks are allocated on the stack (and not on the heap as the rest of the objects in objective-c), when you do something like this:
[dictionary setObject: ^{ printf("hey hey\n"); } forKey: key];
You are allocating the block on the stack frame of your current scope, so when the scope ends (for example your returning the dictionary), the stack frame is destroyed and the block goes with it. So you got yourself a dangling pointer. I would advise reading Mike's article fully. Anyway, you can go with a strong property if when you are assigning the block you copy it:
self.block = [^{} copy];
Edit: After looking at Mike's article date, I am assuming this was the behaviour Pre-ARC. On ARC it seems it's working as expected, and it won't crash.
Edit2: After experimenting with Non-ARC it doesn't crash as well. But this example shows different results depending on the use of ARC or not:
void (^block[10])();
int i = -1;
while(++i < 10)
block[i] = ^{ printf("%d\n", i); };
for(i = 0; i < 10; i++)
block[i]();
Quoting Mike Ashe on the different outcomes:
The reason it prints out ten 9s in the first case is quite simple: the
block that's created within the loop has a lifetime that's tied to the
loop's inner scope. The block is destroyed at the next iteration of
the loop, and when leaving the loop. Of course, "destroy" just means
that its slot on the stack is available to be overwritten. It just
happens that the compiler reuses the same slot each time through the
loop, so in the end, the array is filled with identical pointers, and
thus you get identical behavior.

As far as I understand copy is required when the object is mutable. Use this if you need the value of the object as it is at this moment, and you don't want that value to reflect any changes made by other owners of the object. You will need to release the object when you are finished with it because you are retaining the copy.
On the other hand, strong means that you own the object until it is needed. It is a replacement for the retain attribute, as part of ARC.
Source: Objective-C declared #property attributes (nonatomic, copy, strong, weak)

Note: You should specify copy as the property attribute, because a block needs to be copied to keep track of its captured state outside of the original scope. This isn’t something you need to worry about when using Automatic Reference Counting, as it will happen automatically, but it’s best practice for the property attribute to show the resultant behavior. For more information, see Blocks Programming Topics.

Related

"Retain'ed block property does not copy the block - use copy attribute instead

I come from a heavy JavaScript-oriented background and I'm transitioning as best I can into Objective-C. Naturally, I always find myself jumping at the opportunity to utilize closure functions in my source code, such as:
#property (nonatomic, retain) void (^zoomCallback)(NSInteger width, NSInteger height, NSString *url);
However, each time I jot this into Xcode, it warns me:
Retain'ed block property does not copy the block - use copy attribute instead
It was my understanding that you no longer have to retain things manually anymore in Objective-C due to ARC, so I'm admittedly rather thrown by this warning. I'm assuming by block it's referring to my closure function, so as far as I can interpret it's telling me that assigning this variable:
myObject.zoomCallback = someMethod;
Would also cause someMethod to be retained, and thus the owner of someMethod to continue to exist? Did I get that right?
What are the negative repercussions of this? If I "copy" the block, wont it allow for the owner of someMethod to be destroyed, and thus within the closure method itself any time I refer to "self" it will no longer exist? Don't I almost always want to retain the block unless my closure method is doing something very trivial or something that doesn't reference member variables or methods?
Blocks need to be copied before they are stored (and in some cases just before you use them, but that's usually a strange bit of code) because blocks are created on the stack and need to be moved to the heap. If the block isn't copied and the context in which it was created is destroyed then it won't always work properly. This is the case when the block captures some external variables (instead of only using the passed parameters).

objective-c memory management--how long is object guaranteed to exist?

I have ARC code of the following form:
NSMutableData* someData = [NSMutableData dataWithLength:123];
...
CTRunGetGlyphs(run, CGRangeMake(0, 0), someData.mutableBytes);
...
const CGGlyph *glyphs = [someData mutableBytes];
...
...followed by code that reads memory from glyphs but does nothing with someData, which isn't referenced anymore. Note that CGGlyph is not an object type but an unsigned integer.
Do I have to worry that the memory in someData might get freed before I am done with glyphs (which is actually just pointing insidesomeData)?
All this code is WITHIN the same scope (i.e., a single selector), and glyphs and someData both fall out of scope at the same time.
PS In an earlier draft of this question I referred to 'garbage collection', which didn't really apply to my project. That's why some answers below give it equal treatment with what happens under ARC.
You are potentially in trouble whether you use GC or, as others have recommended instead, ARC. What you are dealing with is an internal pointer which is not considered an owning reference in either GC or ARC in general - unless the implementation has special-cased NSData. Without that owning reference either GC or ARC might remove the object. The problem you face is peculiar to internal pointers.
As you describe your situation the safest thing to do is to hang onto the real reference. You could do this by assigning the NSData reference to either an instance variable or a static (method local if you wish) variable and then assigning nil to that variable when you've done with the internal pointer. In the case of static be careful about concurrency!
In practice your code will probably work in both GC and ARC, probably more likely in ARC, but either could conceivably bite you especially as compilers change. For the cost of one variable declaration and one extra assignment you avoid the problem, cheap insurance.
[See this discussion as an example of short lifetime under ARC.]
Under actual, real garbage collection that code is potentially a problem. Objects may be released as soon as there is no longer any reference to them and the compiler may discard the reference at any time if you never use it again. For optimisation purposes scope is just a way of putting an upper limit on that sort of thing, not a way of dictating it absolutely.
You can use NSAllocateCollectable to attach lifecycle calculation to C primitive pointers, though it's messy and slightly convoluted.
Garbage collection was never implemented in iOS and is now deprecated on the Mac (as referenced at the very bottom of this FAQ), in both cases in favour of automatic reference counting (ARC). ARC adds retains and releases where it can see that they're implicitly needed. Sadly it can perform some neat tricks that weren't previously possible, such as retrieving objects from the autorelease pool if they've been used as return results. So that has the same net effect as the garbage collection approach — the object may be released at any point after the final reference to it vanishes.
A workaround would be to create a class like:
#interface PFDoNothing
+ (void)doNothingWith:(id)object;
#end
Which is implemented to do nothing. Post your autoreleased object to it after you've finished using the internal memory. Objective-C's dynamic dispatch means that it isn't safe for the compiler to optimise the call away — it has no way of knowing you (or the KVO mechanisms or whatever other actor) haven't done something like a method swizzle at runtime.
EDIT: NSData being a special case because it offers direct C-level access to object-held memory, it's not difficult to find explicit discussions of the GC situation at least. See this thread on Cocoabuilder for a pretty good one though the same caveat as above applies, i.e. garbage collection is deprecated and automatic reference counting acts differently.
The following is a generic answer that does not necessarily reflect Objective-C GC support. However, various GC implementaitons, including ref-counting, can be thought of in terms of Reachability, quirks aside.
In a GC language, an object is guaranteed to exist as long as it is Strongly-Reachable; the "roots" of these Strong-Reachability graphs can vary by language and executing environment. The exact meaning of "Strongly" also varies, but generally means that the edges are Strong-References. (In a manual ref-counting scenario each edge can be thought of as an unmatched "retain" from a given "owner".)
C# on the CLR/.NET is one such implementation where a variable can remain in scope and yet not function as a "root" for a reachability-graph. See the Systems.Timer.Timer class and look for GC.KeepAlive:
If the timer is declared in a long-running method, use KeepAlive to prevent garbage collection from occurring [on the timer object] before the method ends.
As of summer 2012, things are in the process of change for Apple objects that return inner pointers of non-object type. In the release notes for Mountain Lion, Apple says:
NS_RETURNS_INNER_POINTER
Methods which return pointers (other than Objective C object type)
have been decorated with the clang compiler attribute
objc_returns_inner_pointer (when compiling with clang) to prevent the
compiler from aggressively releasing the receiver expression of those
messages, which no longer appear to be referenced, while the returned
pointer may still be in use.
Inspection of the NSData.h header file shows that this also applies from iOS 6 onward.
Also note that NS_RETURNS_INNER_POINTER is defined as __attribute__((objc_returns_inner_pointer)) in the clang specification, which makes it such that
the object's lifetime will be extended until at least the earliest of:
the last use of the returned pointer, or any pointer derived from it,
in the calling function;
or the autorelease pool is restored to a
previous state.
Caveats:
If you're using anything older then Mountain Lion or iOS 6 you will still need to use any of the methods discussed here (e.g., __attribute__((objc_precise_lifetime))) when declaring your local NSData or NSMutableData objects.
Also, even with the newest compiler and Apple libraries, if you use older or third party libraries with objects that do not decorate their inner-pointer-returning methods with __attribute__((objc_returns_inner_pointer)) you will need to decorate your local variables declarations of such objects with __attribute__((objc_precise_lifetime)) or use one of the other methods discussed in the answers.

Conflict between memory management descriptions in ObjC book and official docs

I'm trying to learn/understand what happens and why when working with or creating various objects. (Hopefully to LEARN from the docs.)
I'm reading "Programming in Objective-C 2.0" (2nd edition, by Steven Kochan). On page 408, in the first paragraph is a discussion of retain counts:
Note that its reference count then goes to 2. The addObject: method does this automatically; if you check your documentation for the addObject: method, you will see this fact described there.
So I read the addObject: docs:
Inserts a given object at the end of the array.
There, the description is missing, while other items, like arrayByAddingObject:, state it:
Returns a new array that is a copy of the receiving array with a given object added to the end.
Where in the reference does it indicate that addObject: increases the retain count? Given the presence of ARC, I should still understand what these methods are doing to avoid bugs and issues. What does ARC bring to this? (Going to read that again...)
Great question, I'm glad to see someone actually reading the docs and trying to understand them!
Since you are looking for how to research answers using Apple's documentation more so than the actual answer itself, here is how I found the answer:
First I look at the class reference for addObject: which is a method of NSMutableArray and there is no mention of memory management.
Then I look at the Overview section at the top... Hmmm, still no luck.
Since the behavior might be inherited from a parent class, I look at the Inherits from section at the top of the class reference and see that NSArray is the most immediate parent. Let's check there:
Under the Overview There is one small section about retain's:
Special Considerations
In most cases your custom NSArray class should conform to Cocoa’s
object-ownership conventions. Thus you must send retain to each object
that you add to your collection and release to each object that you
remove from the collection. Of course, if the reason for subclassing
NSArray is to implement object-retention behavior different from the
norm (for example, a non-retaining array), then you can ignore this
requirement.
Okay, I'm still not happy... Where next? The parent class of NSArray is NSObject and I know that it won't be covered there in this case (from experience) so I won't bother checking that. (If the parent was another class or something that might be covered by NSObject, I would keep moving up the tree until I found something.)
The Companion Guides usually contains a lot of good information for these types of classes. Let's try the first one, Collections Programming Topics.
The first section (after Overview) is Accessing Indexes and Easily Enumerating Elements: Arrays. Sounds promising! Click on Relevant Chapters: “Arrays: Ordered Collections”
There it is under Array Fundamentals along with a link to even more information:
And when you add an object to an NSMutableArray object, the object
isn’t copied, (unless you pass YES as the argument to
initWithArray:copyItems:). Rather, an object is added directly to an
array. In a managed memory environment, an object receives a retain
message when it’s added; in a garbage collected environment, it is
strongly referenced. When an array is deallocated in a managed memory
environment, each element is sent a release message. For more
information on copying and memory management, see “Copying
Collections.”
The book must be referring to out of date documentation because you are correct it doesn't mention anything about the retain count. It does in fact retain the object though. The way you need to think of it is not in terms of retain counts (which are useless) but rather ownership. Especially so when using ARC.
When you add an object to an NSMutableArray, it is taking ownership of that object (in ARC terminology it has a strong reference to it).
"What does ARC bring to this?"
ARC does nothing different. All ARC does (besides some optimization) is add the same release, retain, and autorelease statements that you would add yourself without using ARC. All you need to care about is that once you add an object to the array, it will live at least as long as the array.
And the arrayByAddingObject: method creates a new NSArray (or NSMutableArray) containing the object you're passing, and keeps a strong reference to the passed object. The actual array object that it creates has no references yet unless you assign it to either an ivar, property, or local variable. What you assign it to determines it's lifespan.
Basically even without ARC, it's best to think of object life-cycles in terms of ownership, ARC just formalizes that. So because of that, when using the frameworks, it doesn't matter when retains happen or don't happen, you are only responsible for your objects until you pass ownership to another object and you can trust that the framework will keep the object alive as long as it needs it.
Now of course you have to intuit what constitutes ownership. For instance delegate properties are often assign, or in ARC unsafe_unretained or weak, to prevent circular retains cycles (where two objects each retain each other), though are sometimes retained/strong so you need to look into those on a case by case basis.
And also in cases like key value observing and NSNotification observing the object you are observing does not retain the observer.
But those are really exceptions to the rule. Generally you can assume a strong reference.
Regarding this sentence above: "The actual array object that it creates has no references yet unless you assign it to either an ivar, property, or local variable. What you assign it to determines it's lifespan." I'll try to explain:
When you run this piece of code: [someArray arrayByAddingObject:someObject]; you've instantiated a new NSArray or NSMutableArray object (depending on which object type someArray is) but you haven't actually assigned it to any reference. That means that if you're using ARC, it may be immediately released afterwards, or if not using ARC, it will be released when it's autoreleasepool is drained (probably on the next iteration of that thread's runloop).
Now if instead you did this: NSArray *someOtherArray = [someArray arrayByAddingObject:someObject]; you now have a reference to the newly created array, called someOtherArray. In this case, this is a local variable who's scope is only within whichever set of { } it resides (so it could be inside an if statement, a loop, or a method. Now if you do nothing else with it, it will die sometime after it's scope ends (it isn't guaranteed to die right away, but that isn't important, you just can't assume it lives longer).
Now if in your class you have an iVar (instance variable) declared in the header like NSArray *someOtherArray; (which is strong by default in ARC) and you run someOtherArray = [someArray arrayByAddingObject:someObject]; somewhere in your class, the object will live until you either remove the reference (someOtherArray = nil), you overwrite the reference (someOtherArray = someThirdArray), or the class is deallocated. If you were not using ARC, you would have to make sure to retain that to achieve the same effect (someOtherArray = [[someArray arrayByAddingObject:someObject] retain]; which is essentially what ARC is doing behind the scenes).
Or you may have a property declared instead like #property (nonatomic, strong) NSArray *someOtherArray in which self.someOtherArray = [someArray arrayByAddingObject:someObject]; would achieve the same effect but would use the proprety accessor (setSomeOtherArray:) or you could still use someOtherArray = [someArray arrayByAddingObject:someObject]; to set the iVar directly (assuming you #synthesized it).
Or assuming non-ARC, you might have declared the property like #property (nonatomic, retain) NSArray *someOtherArray in which self.someOtherArray = [someArray arrayByAddingObject:someObject]; would behave exactly as ARC would, but when setting the iVar directly you would still need to add that retain manually.
I hope that clears things up a bit, please let me know if there's anything I glossed over or left out.
As you mentioned in your comment, the key here is intuitively knowing when an object would be considered owned by another one or not. Luckily, the Cocoa frameworks follow a pretty strict set of conventions that allow you to make safe assumptions:
When setting an NSString property of a framework object (say the text property of a UILabel for example) it is always copied (if anyone knows of a counter-example, please comment or edit). So you don't have to worry about your string once you pass it. Strings are copied to prevent a mutable string from being changed after it's passed.
When setting any other property other than delegate, it's (almost?) always retained (or strong reference in ARC)
When setting delegate properties, it's (almost?) always an assign (or weak reference) to prevent circular retain cycles. (For instance, object a has a property b that is strong referenced and b has a strong referenced delegate property. You set a as the delegate for b. Now a and b are both strongly referencing each other, and neither object will ever reach a retain count of 0 and will never reach it's dealloc method to dealloc the other object. NSURLConnection is a counter-example that does strongly reference it's delegate, because it's delegate is set via a method -- see that convention below -- and it's convention to nil out or release an NSURLConnection after it completes rather than in dealloc, which will remove the circular retain)
When adding to an array or dictionary, it's always retained (or strong reference).
When calling a method and passing block(s), they are always copied to move them from the stack (where they are initially created for performance purposes) into the heap.
Methods that take in object parameters and don't return a result immediately are (always? I can't think of any that don't) either copying or retaining (strong referencing) the parameters that you pass to ensure that the method can do what it needs to with them. For instance, NSURLConnection even retains it's delegate because it's passed in via a method, whereas when setting the delegate property of other objects will not retain, as that is the convention.
It's suggested that you follow these same conventions in your own classes as well for consistency.
Also, don't forget that the headers of all classes are available to you, so you can easily see whether a property is retain or assign (or strong or weak). You can't check what methods do with their parameters, but there's no need because of the convention that parameters are owned by the receiver.
In general, you should look in the "most global" spot for information about anything in the Cocoa APIs. Since memory management is pervasive across the system APIs and the APIs are consistent in their implementation of the Cocoa memory management policy, you simply need to read and understand the Cocoa memory management guide.
Once understood, you can safely assume that all system APIs implement to that memory management policy unless explicitly documented otherwise.
Thus, for NSMutableArray's addObject: method, it would have to retain the object added to the array or else it would be in violation of that standard policy.
You'll see this throughout the documentation. This prevents every method's documentation from being a page or more long and it makes it obvious when the rare method or class implements something that is, for whatever reason (sometimes not so good), an exception to the rule.
In the "Basic Memory Management Rules" section of the memory management guide:
You can take ownership of an object using retain.
A received object is normally guaranteed to remain valid within the
method it was received in, and that method may also safely return the
object to its invoker. You use retain in two situations: (1) In the
implementation of an accessor method or an init method, to take
ownership of an object you want to store as a property value; and (2)
To prevent an object from being invalidated as a side-effect of some
other operation (as explained in “Avoid Causing Deallocation of
Objects You’re Using”).
(2) is the key; an NS{Mutable}Array must retain any added object(s) exactly because it needs to prevent the added object(s) from being invalidated due to some side-effect. To not do so would be divergent from the above rule and, thus, would be explicitly documented.

Is it possible to have a memory leak under ARC by passing a block as an argument and then copying it? If so, how to prevent it?

I'm working on a Objective-C project and we have ARC enabled. I'm currently dealing with two separate classes, let's call them A and B.
A has a strong reference to B and B has a block property with the copy attribute.
#interface A {
B *b;
...
}
#end
#interface B {
...
}
#property (copy) void (^myBlock)();
#end
Now, if inside a method owned by A I try to assign to myBlock:
b.myBlock = ^{ [self doSomething] };
The compiler (correctly) complains:
Capturing 'self' strongly in this block is likely to lead to a retain cycle.
I understand this behaviour and how to work around it, based on the answers to this question. (Basically, a cycle is formed because once the block is copied it will contain a strong reference to A, which has a strong reference to B, which in turn has a strong reference to the block itself.)
Now, if instead of directly assigning the block to the property I pass it to a method of B:
[b takeMyBlock:^{ [self doSomething] }];
And inside that method I do the assignment, the compiler will no longer complain.
My question is: Will that create a memory leak? If so, how to avoid it? Is it possible to annotate the method argument somehow so that the compiler knows the argument is going to be copied?
Thanks in advance.
I just encountered the same issue myself. While the issue didn't manifest itself as a leak per se, I actually found the problem while analysing heap growth using the Allocations tool in Instruments -- so it obviously does cause a memory issue.
I think the compiler would have to be pretty smart to pick up on the problem and issue a warning, so my guess is that one of two approaches is needed:
Documentation: As you suggested in your question, clearly document
that this method will copy the block passed to it. This might
involve naming the block parameter something like blockToCopy
(Xcode helpfully displays the block parameter name when using
autocompletion). Also, comment the method declaration. If you're
using a documentation tool like appledoc this is particularly nice,
as your documentation will also appear in Xcode's quick help dialog
when option clicking your code.
Never capture self strongly in a block: This is perhaps best
practise, as I don't think it's ever a good idea to keep a strong
reference to self inside a block. If you have to reference self,
use a weak reference. This will certainly avoid the situation you
describe. (N.B. referencing an instance variable will also keep a strong
reference to self).
In ARC, what it does is if a local variable or a WEAK variable loses it reference. The memory will be dealloced immediately since its reference count is zero. However, if you are reallocating a STRONG variable, it will definitely cause a memory leak for strong variable retains even if reference count decays to zero. In this case, you shall set this variable to NIL before reallocation or set the variable to weak if strong property is unnecessary.

Storing Blocks in an Array

In Objective-C, I know that blocks are considered objects, so I was wondering if it was possible to store them in an array. This begs the question, are blocks first class objects or are they just treated like objects for the sake of passing them between objects? If they are first class objects, then shouldn't they be storable in arrays?
EDIT: Without going into too much detail, under ARC, you can now add blocks to collections like any other object (see discussion).
I've left the original answer intact below, since it contains some interesting technical details.
This begs the question, are blocks first class objects or are they
just treated like objects for the sake of passing them between
objects? If they are first class objects, then shouldn't they be
storable in arrays?
Blocks are Objective-C objects that very much behave like every other NSObject, with a couple of key differences:
Blocks are always generated by the compiler. They are effectively "alloc/init"ed at runtime as execution passes over the blocks declaration.
Blocks are initially created on the stack. Block_copy() or the copy method must be used to move the Block to the heap if the Block is to outlive the current scope (see ARC point below).
Blocks don't really have a callable API beyond memory management.
To put a Block into a Collection, it must first be copied. Always. Including under ARC. (See comments.) If you don't, there is risk that the stack allocated Block will be autoreleased and your app will later crash.
Copying a stack based block will copy all of the captured state, too. If you are making multiple copies of a block, it is more efficient to copy it once, then copy the copy (because copying the copy just bumps the retain count since Blocks are immutable).
Under ARC, returning a Block from a method or function "just works"; it'll be automatically copied to the heap and the return will effectively be an autoreleased Block (the compiler may optimize away the autorelease in certain circumstances). Even with ARC, you still need to copy the block before sticking it into a collection.
I've written a couple of blog posts both providing an introduction to blocks and some tips and tricks. You might find them interesting.
And, yes, adding 'em to dictionaries is quite useful. I've written a couple of bits of code where I dropped blocks into dictionaries as command handlers where the key was the command name. Very handy.
Yes, blocks are indeed objects, and you can put them in arrays:
NSMutableArray *arr = [NSMutableArray new];
[arr addObject:^(){NSLog(#"my block");}];
void (^ myblock)() = [arr objectAtIndex:0];
myblock();
this will put the "my block" in the console.