Too many values to unpack using NLTK and Pandas in Python - pandas

I am trying out different things to make the NLTK's naive bayes work using the NLTK and Pandas modules, but I am getting the "too many values to unpack" error.
import pandas as pd
from pandas import DataFrame, Series
import numpy as np
import re
import nltk
### Remove cases with missing name or missing ethnicity information
def read_file():
data = pd.read_csv("C:\sample.csv", encoding="utf-8")
frame = DataFrame(data)
frame.columns = ["Name", "Gender"]
return frame
#read_file()
def gender_features(word):
return {'last_letter': word[-1]}
#gender_features()
frame = read_file()
featuresets = [(gender_features(n), gender) for (n, gender) in frame]
train_set, test_set = features[500:], featuresets[:500]
classifier = nltkNaiveBayesClassifier.train(train_set)

I suspect you are trying to do something bigger than name classification when using panadas.DataFrame because the DataFrame object is normally used when you have limited RAM and wants to makes use of diskspace as you iterate through the data to extract features:
a 2-dimensional labeled data structure with columns of potentially
different types. You can think of it like a spreadsheet or SQL table,
or a dict of Series objects. It is generally the most commonly used
pandas object. Like Series, DataFrame accepts many different kinds of
input:
Dict of 1D ndarrays, lists, dicts, or Series
2-D numpy.ndarray
Structured or record ndarray
A Series
Another DataFrame
I suggest you go through the pandas tutorial to learn about the library first: http://pandas.pydata.org/pandas-docs/dev/tutorials.html
And then learn about the NLTK classification from http://www.nltk.org/book/ch06.html
Firstly, there are several things wrong in how you access pandas.DataFrame object.
To iterate through the rows of the dataframe, you should do this:
# Read file into pandas dataframe
df = DataFrame(pd.read_csv('sample.csv'))
df.columns = ['name', 'gender']
for index, row in df.iterrows():
print row['name'], row['gender']
Next to train a classifier, you should do this:
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
from nltk.corpus import names
from nltk.classify import NaiveBayesClassifier as nbc
# Create a sample.csv file
male_names = [','.join([i,'m']) for i in names.words('male.txt')]
female_names = [','.join([i,'m']) for i in names.words('female.txt')]
with open('sample.csv', 'w') as fout:
fout.write('\n'.join(male_names+female_names))
# Feature extractor function.
def gender_features(word):
return {'last_letter': word[-1]}
# Read file into pandas dataframe
df = DataFrame(pd.read_csv('sample.csv'))
df.columns = ['name', 'gender']
# Extract features.
featuresets = [(gender_features(name), gender) for index, (name, gender) in df.iterrows()]
# Split train and test set
train_set, test_set = featuresets[500:], featuresets[:500]
# Train a classifier
classifier = nbc.train(train_set)
# Test classifier on "Neo"
print classifier.classify(gender_features('Neo'))
[out]:
m

Related

Stack dataframes vertically ignoring rows with duplicate timestamps [duplicate]

I would like to read several CSV files from a directory into pandas and concatenate them into one big DataFrame. I have not been able to figure it out though. Here is what I have so far:
import glob
import pandas as pd
# Get data file names
path = r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")
dfs = []
for filename in filenames:
dfs.append(pd.read_csv(filename))
# Concatenate all data into one DataFrame
big_frame = pd.concat(dfs, ignore_index=True)
I guess I need some help within the for loop?
See pandas: IO tools for all of the available .read_ methods.
Try the following code if all of the CSV files have the same columns.
I have added header=0, so that after reading the CSV file's first row, it can be assigned as the column names.
import pandas as pd
import glob
import os
path = r'C:\DRO\DCL_rawdata_files' # use your path
all_files = glob.glob(os.path.join(path , "/*.csv"))
li = []
for filename in all_files:
df = pd.read_csv(filename, index_col=None, header=0)
li.append(df)
frame = pd.concat(li, axis=0, ignore_index=True)
Or, with attribution to a comment from Sid.
all_files = glob.glob(os.path.join(path, "*.csv"))
df = pd.concat((pd.read_csv(f) for f in all_files), ignore_index=True)
It's often necessary to identify each sample of data, which can be accomplished by adding a new column to the dataframe.
pathlib from the standard library will be used for this example. It treats paths as objects with methods, instead of strings to be sliced.
Imports and Setup
from pathlib import Path
import pandas as pd
import numpy as np
path = r'C:\DRO\DCL_rawdata_files' # or unix / linux / mac path
# Get the files from the path provided in the OP
files = Path(path).glob('*.csv') # .rglob to get subdirectories
Option 1:
Add a new column with the file name
dfs = list()
for f in files:
data = pd.read_csv(f)
# .stem is method for pathlib objects to get the filename w/o the extension
data['file'] = f.stem
dfs.append(data)
df = pd.concat(dfs, ignore_index=True)
Option 2:
Add a new column with a generic name using enumerate
dfs = list()
for i, f in enumerate(files):
data = pd.read_csv(f)
data['file'] = f'File {i}'
dfs.append(data)
df = pd.concat(dfs, ignore_index=True)
Option 3:
Create the dataframes with a list comprehension, and then use np.repeat to add a new column.
[f'S{i}' for i in range(len(dfs))] creates a list of strings to name each dataframe.
[len(df) for df in dfs] creates a list of lengths
Attribution for this option goes to this plotting answer.
# Read the files into dataframes
dfs = [pd.read_csv(f) for f in files]
# Combine the list of dataframes
df = pd.concat(dfs, ignore_index=True)
# Add a new column
df['Source'] = np.repeat([f'S{i}' for i in range(len(dfs))], [len(df) for df in dfs])
Option 4:
One liners using .assign to create the new column, with attribution to a comment from C8H10N4O2
df = pd.concat((pd.read_csv(f).assign(filename=f.stem) for f in files), ignore_index=True)
or
df = pd.concat((pd.read_csv(f).assign(Source=f'S{i}') for i, f in enumerate(files)), ignore_index=True)
An alternative to darindaCoder's answer:
path = r'C:\DRO\DCL_rawdata_files' # use your path
all_files = glob.glob(os.path.join(path, "*.csv")) # advisable to use os.path.join as this makes concatenation OS independent
df_from_each_file = (pd.read_csv(f) for f in all_files)
concatenated_df = pd.concat(df_from_each_file, ignore_index=True)
# doesn't create a list, nor does it append to one
import glob
import os
import pandas as pd
df = pd.concat(map(pd.read_csv, glob.glob(os.path.join('', "my_files*.csv"))))
Almost all of the answers here are either unnecessarily complex (glob pattern matching) or rely on additional third-party libraries. You can do this in two lines using everything Pandas and Python (all versions) already have built in.
For a few files - one-liner
df = pd.concat(map(pd.read_csv, ['d1.csv', 'd2.csv','d3.csv']))
For many files
import os
filepaths = [f for f in os.listdir(".") if f.endswith('.csv')]
df = pd.concat(map(pd.read_csv, filepaths))
For No Headers
If you have specific things you want to change with pd.read_csv (i.e., no headers) you can make a separate function and call that with your map:
def f(i):
return pd.read_csv(i, header=None)
df = pd.concat(map(f, filepaths))
This pandas line, which sets the df, utilizes three things:
Python's map (function, iterable) sends to the function (the
pd.read_csv()) the iterable (our list) which is every CSV element
in filepaths).
Panda's read_csv() function reads in each CSV file as normal.
Panda's concat() brings all these under one df variable.
Easy and Fast
Import two or more CSV files without having to make a list of names.
import glob
import pandas as pd
df = pd.concat(map(pd.read_csv, glob.glob('data/*.csv')))
The Dask library can read a dataframe from multiple files:
>>> import dask.dataframe as dd
>>> df = dd.read_csv('data*.csv')
(Source: https://examples.dask.org/dataframes/01-data-access.html#Read-CSV-files)
The Dask dataframes implement a subset of the Pandas dataframe API. If all the data fits into memory, you can call df.compute() to convert the dataframe into a Pandas dataframe.
I googled my way into Gaurav Singh's answer.
However, as of late, I am finding it faster to do any manipulation using NumPy and then assigning it once to a dataframe rather than manipulating the dataframe itself on an iterative basis and it seems to work in this solution too.
I do sincerely want anyone hitting this page to consider this approach, but I don't want to attach this huge piece of code as a comment and making it less readable.
You can leverage NumPy to really speed up the dataframe concatenation.
import os
import glob
import pandas as pd
import numpy as np
path = "my_dir_full_path"
allFiles = glob.glob(os.path.join(path,"*.csv"))
np_array_list = []
for file_ in allFiles:
df = pd.read_csv(file_,index_col=None, header=0)
np_array_list.append(df.as_matrix())
comb_np_array = np.vstack(np_array_list)
big_frame = pd.DataFrame(comb_np_array)
big_frame.columns = ["col1", "col2"....]
Timing statistics:
total files :192
avg lines per file :8492
--approach 1 without NumPy -- 8.248656988143921 seconds ---
total records old :1630571
--approach 2 with NumPy -- 2.289292573928833 seconds ---
A one-liner using map, but if you'd like to specify additional arguments, you could do:
import pandas as pd
import glob
import functools
df = pd.concat(map(functools.partial(pd.read_csv, sep='|', compression=None),
glob.glob("data/*.csv")))
Note: map by itself does not let you supply additional arguments.
If you want to search recursively (Python 3.5 or above), you can do the following:
from glob import iglob
import pandas as pd
path = r'C:\user\your\path\**\*.csv'
all_rec = iglob(path, recursive=True)
dataframes = (pd.read_csv(f) for f in all_rec)
big_dataframe = pd.concat(dataframes, ignore_index=True)
Note that the three last lines can be expressed in one single line:
df = pd.concat((pd.read_csv(f) for f in iglob(path, recursive=True)), ignore_index=True)
You can find the documentation of ** here. Also, I used iglobinstead of glob, as it returns an iterator instead of a list.
EDIT: Multiplatform recursive function:
You can wrap the above into a multiplatform function (Linux, Windows, Mac), so you can do:
df = read_df_rec('C:\user\your\path', *.csv)
Here is the function:
from glob import iglob
from os.path import join
import pandas as pd
def read_df_rec(path, fn_regex=r'*.csv'):
return pd.concat((pd.read_csv(f) for f in iglob(
join(path, '**', fn_regex), recursive=True)), ignore_index=True)
Inspired from MrFun's answer:
import glob
import pandas as pd
list_of_csv_files = glob.glob(directory_path + '/*.csv')
list_of_csv_files.sort()
df = pd.concat(map(pd.read_csv, list_of_csv_files), ignore_index=True)
Notes:
By default, the list of files generated through glob.glob is not sorted. On the other hand, in many scenarios, it's required to be sorted e.g. one may want to analyze number of sensor-frame-drops v/s timestamp.
In pd.concat command, if ignore_index=True is not specified then it reserves the original indices from each dataframes (i.e. each individual CSV file in the list) and the main dataframe looks like
timestamp id valid_frame
0
1
2
.
.
.
0
1
2
.
.
.
With ignore_index=True, it looks like:
timestamp id valid_frame
0
1
2
.
.
.
108
109
.
.
.
IMO, this is helpful when one may want to manually create a histogram of number of frame drops v/s one minutes (or any other duration) bins and want to base the calculation on very first timestamp e.g.
begin_timestamp = df['timestamp'][0]
Without, ignore_index=True, df['timestamp'][0] generates the series containing very first timestamp from all the individual dataframes, it does not give just a value.
Another one-liner with list comprehension which allows to use arguments with read_csv.
df = pd.concat([pd.read_csv(f'dir/{f}') for f in os.listdir('dir') if f.endswith('.csv')])
Alternative using the pathlib library (often preferred over os.path).
This method avoids iterative use of pandas concat()/apped().
From the pandas documentation:
It is worth noting that concat() (and therefore append()) makes a full copy of the data, and that constantly reusing this function can create a significant performance hit. If you need to use the operation over several datasets, use a list comprehension.
import pandas as pd
from pathlib import Path
dir = Path("../relevant_directory")
df = (pd.read_csv(f) for f in dir.glob("*.csv"))
df = pd.concat(df)
If multiple CSV files are zipped, you may use zipfile to read all and concatenate as below:
import zipfile
import pandas as pd
ziptrain = zipfile.ZipFile('yourpath/yourfile.zip')
train = []
train = [ pd.read_csv(ziptrain.open(f)) for f in ziptrain.namelist() ]
df = pd.concat(train)
Based on Sid's good answer.
To identify issues of missing or unaligned columns
Before concatenating, you can load CSV files into an intermediate dictionary which gives access to each data set based on the file name (in the form dict_of_df['filename.csv']). Such a dictionary can help you identify issues with heterogeneous data formats, when column names are not aligned for example.
Import modules and locate file paths:
import os
import glob
import pandas
from collections import OrderedDict
path =r'C:\DRO\DCL_rawdata_files'
filenames = glob.glob(path + "/*.csv")
Note: OrderedDict is not necessary, but it'll keep the order of files which might be useful for analysis.
Load CSV files into a dictionary. Then concatenate:
dict_of_df = OrderedDict((f, pandas.read_csv(f)) for f in filenames)
pandas.concat(dict_of_df, sort=True)
Keys are file names f and values are the data frame content of CSV files.
Instead of using f as a dictionary key, you can also use os.path.basename(f) or other os.path methods to reduce the size of the key in the dictionary to only the smaller part that is relevant.
import os
os.system("awk '(NR == 1) || (FNR > 1)' file*.csv > merged.csv")
Where NR and FNR represent the number of the line being processed.
FNR is the current line within each file.
NR == 1 includes the first line of the first file (the header), while FNR > 1 skips the first line of each subsequent file.
In case of an unnamed column issue, use this code for merging multiple CSV files along the x-axis.
import glob
import os
import pandas as pd
merged_df = pd.concat([pd.read_csv(csv_file, index_col=0, header=0) for csv_file in glob.glob(
os.path.join("data/", "*.csv"))], axis=0, ignore_index=True)
merged_df.to_csv("merged.csv")
You can do it this way also:
import pandas as pd
import os
new_df = pd.DataFrame()
for r, d, f in os.walk(csv_folder_path):
for file in f:
complete_file_path = csv_folder_path+file
read_file = pd.read_csv(complete_file_path)
new_df = new_df.append(read_file, ignore_index=True)
new_df.shape
Consider using convtools library, which provides lots of data processing primitives and generates simple ad hoc code under the hood.
It is not supposed to be faster than pandas/polars, but sometimes it can be.
e.g. you could concat csv files into one for further reuse - here's the code:
import glob
from convtools import conversion as c
from convtools.contrib.tables import Table
import pandas as pd
def test_pandas():
df = pd.concat(
(
pd.read_csv(filename, index_col=None, header=0)
for filename in glob.glob("tmp/*.csv")
),
axis=0,
ignore_index=True,
)
df.to_csv("out.csv", index=False)
# took 20.9 s
def test_convtools():
table = None
for filename in glob.glob("tmp/*.csv"):
table_ = Table.from_csv(filename, header=False)
if table is None:
table = table_
else:
table = table.chain(table_)
table.into_csv("out_convtools.csv", include_header=False)
# took 15.8 s
Of course if you just want to obtain a dataframe without writing a concatenated file, it will take 4.63 s and 10.9 s correspondingly (pandas is faster here because it doesn't need to zip columns for writing it back).
import pandas as pd
import glob
path = r'C:\DRO\DCL_rawdata_files' # use your path
file_path_list = glob.glob(path + "/*.csv")
file_iter = iter(file_path_list)
list_df_csv = []
list_df_csv.append(pd.read_csv(next(file_iter)))
for file in file_iter:
lsit_df_csv.append(pd.read_csv(file, header=0))
df = pd.concat(lsit_df_csv, ignore_index=True)
This is how you can do it using Colaboratory on Google Drive:
import pandas as pd
import glob
path = r'/content/drive/My Drive/data/actual/comments_only' # Use your path
all_files = glob.glob(path + "/*.csv")
li = []
for filename in all_files:
df = pd.read_csv(filename, index_col=None, header=0)
li.append(df)
frame = pd.concat(li, axis=0, ignore_index=True,sort=True)
frame.to_csv('/content/drive/onefile.csv')

Why Do My K-means Cluster Scatterplot Colors Match Far-away Centroids

I have a simple notebook to read in text files, vectorize the text, use K-means clustering to label and then plot the documents. For testing purposes I choose a small number of documents from three distinct sources (Edgar Allen Poe fiction, Russian Troll Twitter, and Ukraine news) and deliberately chose K=3 as a kind of surface validity check. My problem is that in one visible cluster, several plot points are colored the same as a (visibly) far away cluster.
3 Clusters w/ Edge Points Colored as Distant Clusters
My code:
# import pandas to use dataframes and handle tabular data
import pandas as pd
# read in the data using panda's "read_csv" function
col_list = ["DOC_ID", "TEXT"]
data = pd.read_csv('/User/Documents/NLP/Three_Genre_Samples.csv', usecols=col_list)
# use regular expression to clean annoying "/n" newline characters
data = data.replace(r'\n',' ', regex=True)
#import sklearn for TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
# vectorize text in the df and fit the TEXT data.
# using the Inverse Document Frequency (IDF) vector collected feature-wise over the corpus.
vectorizer = TfidfVectorizer(stop_words={'english'})
X = vectorizer.fit_transform(data.TEXT)# deliberate "K" value from document sources
true_k = 3
# define an unsupervised clustering "model" using KMeans
model = KMeans(n_clusters=true_k, init='k-means++', max_iter=200, n_init=10)
#fit model to data
model.fit(X)
# define clusters lables (which are integers--a human needs to make them interpretable)
labels=model.labels_
title=[data.DOC_ID]
#make a "clustered" version of the dataframe
data_cl=data
# add label values as a new column, "Cluster"
data_cl['Cluster'] = labels
# output new, clustered dataframe to a csv file
data_cl.to_csv('/Users/Documents/NLP/Three_Genre_Samples_clustered.csv.csv')
# plot document clusters:
import numpy as np
from sklearn.datasets import load_digits
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
model_indices = model.fit_predict(X)
pca = PCA(n_components=2)
scatter_plot_points = pca.fit_transform(X.toarray())
colors = ["r", "b", "c"]
x_axis = [o[0] for o in scatter_plot_points]
y_axis = [o[1] for o in scatter_plot_points]
fig, ax = plt.subplots(figsize=(20,10))
ax.scatter(x_axis, y_axis, c=[colors[d] for d in model_indices])
for i, txt in enumerate(labels):
ax.annotate(txt, (x_axis[i]+.005, y_axis[i]), size=16)
I'd be grateful for any insight.

How to apply pandas data on word2vec

I am trying to use W2V.
I saved my preprocessed data as a pandas dataframe, and I want to apply the word2vec algorithm to my preprocessed data.
This is my data.
http://naver.me/IFjLAHld
This is my code.
from gensim.models.word2vec import Word2Vec
import pandas as pd
import numpy as np
df = pd.read_excel('re_nlp0820.xlsx')
model = Word2Vec(df['nlp'],
sg=1,
window=3,
min_count=1,
workers=4,
iter=1)
model.init_sims(replace=True)
model_result1 = model.wv.most_similar('국민', topn =20)
print(model_result1)
Please, help me
First you need to convert the data you are passing to the Word2Vec instance into a nested list where each list contains the tokenized form of the text. You can do so by:
from gensim.models.word2vec import Word2Vec
import pandas as pd
import numpy as np
import nltk
df = pd.read_excel('re_nlp0820.xlsx')
nlp = [nltk.word_tokenize(i) for i in df['nlp']]
model = Word2Vec(nlp,
sg=1,
window=3,
min_count=1,
workers=4,
iter=1)
model.init_sims(replace=True)
model_result1 = model.wv.most_similar('국민', topn =20)
print(model_result1)
Gensim's Word2Vec needs as its training corpus a re-iterable sequence, where each item is a list-of-words.
You df['nlp'] is probably just a sequence of strings, so it's not in the right format. You should make sure each of its items is broken into a Python list that has your desired words as individual strings.
(Separately: min_count=1 is almost always a bad idea with this algorithm, which gives better results if rare words with few usage examples are discarded. And, you shouldn't need to call .init_sims() at all.)

How to most efficiently use Pandas UDF in Spark with multiple Series as inputs

I have some PySpark code that aims to run a machine learning model trained in sklearn on a pyspark dataframe looks like this:
from sklearn.ensemble import RandomForestRegressor
X = np.random.rand(1000, 100)
y = np.random.randint(2, size=1000)
tree = RandomForestRegressor(n_jobs=4)
tree.fit(X, y)
pdf = pd.DataFrame(X)
df = spark.createDataFrame(pdf)
from pyspark.sql.functions import pandas_udf, PandasUDFType
#pandas_udf('double')
# Input/output are both a pandas.Series of doubles
def pandas_plus_one(*args):
return pd.Series(tree.predict(pd.concat([args[i] for i in range(100)],axis=1)))
df = df.withColumn('result', pandas_plus_one(*[df[i] for i in range(100)]))
My question is that is this the most efficient way to do things with PySpark? In particular, I would like to avoid having to do pd.concat which involves copying all the Series (which were probably adjacent in memory anyways) to a new pandas DataFrame inside of the UDF function. The ideal solution would be for the Pandas UDF to accept a DataFrame as an input, but I haven't found a way to make it work.
Note: I am not looking for solutions that involve SparkML scikit-spark etc.

What is the difference between doing a regression with a dataframe and ndarray?

I would like to know why would I need to convert my dataframe to ndarray when doing a regression, since I get the same result for intercept and coef when I do not convert it?
import matplotlib.pyplot as plt
import pandas as pd
import pylab as pl
import numpy as np
from sklearn import linear_model
%matplotlib inline
# import data and create dataframe
!wget -O FuelConsumption.csv https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/ML0101ENv3/labs/FuelConsumptionCo2.csv
df = pd.read_csv("FuelConsumption.csv")
cdf = df[['ENGINESIZE','CYLINDERS','FUELCONSUMPTION_COMB','CO2EMISSIONS']]
# Split train/ test data
msk = np.random.rand(len(df)) < 0.8
train = cdf[msk]
test = cdf[~msk]
# Modeling
regr = linear_model.LinearRegression()
train_x = np.asanyarray(train[['ENGINESIZE']])
train_y = np.asanyarray(train[['CO2EMISSIONS']])
**# if I use the dataframe, train[['ENGINESIZE']] for 'x', and train[['CO2EMISSIONS']] for 'y'
below, I get the same result**
regr.fit (train_x, train_y)
# The coefficients
print ('Coefficients: ', regr.coef_)
print ('Intercept: ',regr.intercept_)
Thank you very much!
So df is the loaded dataframe, cdf is another frame with selected columns, and train is selected rows.
train[['ENGINESIZE']] is a 1 column dataframe (I believe train['ENGINESIZE'] would be a pandas Series).
I believe the preferred syntax for getting an array from the dataframe is:
train[['ENGINESIZE']].values # or
train[['ENGINESIZE']].to_numpy()
though
np.asanyarray(train[['ENGINESIZE']])
is supposed to do the same thing.
Digging down through the regr.fit code I see that it calls sklearn.utils.check_X_y which in turn calls sklearn.tils.check_array. That takes care of converting the inputs to numpy arrays, with some awareness of pandas dataframe peculiarities (such as multiple dtypes).
So it appears that if fit accepts your dataframes, you don't need to convert them ahead of time. But if you can get a nice array from the dataframe, there's no harm in do that either. Either way the fit is done with arrays, derived from the dataframe.