How does gcc push local variables on to the stack? - variables

void
f
()
{
int a[1];
int b;
int c;
int d[1];
}
I have found that these local variables, for this example, are not pushed on to the stack in order. b and c are pushed in the order of their declaration, but, a and d are grouped together. So the compiler is allocating arrays differently from any other built in type or object.
Is this a C/C++ requirement or gcc implementation detail?

The C standard says nothing about the order in which local variables are allocated. It doesn't even use the word "stack". It only requires that local variables have a lifetime that begins on entry to the nearest enclosing block (basically when execution reaches the {) and ends on exit from that block (reaching the }), and that each object has a unique address. It does acknowledge that two unrelated variables might happen to be adjacent in memory (for obscure technical reasons involving pointer arithmetic), but doesn't say when this might happen.
The order in which variables are allocated is entirely up to the whim of the compiler, and you should not write code that depends on any particular ordering. A compiler might lay out local variables in the order in which they're declared, or alphabetically by name, or it might group some variables together if that happens to result in faster code.
If you need to variables to be allocated in a particular order, you can wrap them in an array or a structure.
(If you were to look at the generated machine code, you'd most likely find that the variables are not "pushed onto the stack" one by one. Instead, the compiler will probably generate a single instruction to adjust the stack pointer by a certain number of bytes, effectively allocating a single chunk of memory to hold all the local variables for the function or block. Code that accesses a given variable will then use its offset within the stack frame.)
And since your function doesn't do anything with its local variables, the compiler might just not bother allocating space for them at all, particularly if you request optimization with -O3 or something similar.

The compiler can order the local variables however it wants. It may even choose to either not allocate them at all (for example, if they're not used, or are optimized away through propagation/ciscizing/keeping in register/etc) or allocate the same stack location for multiple locals that have disjoint live ranges.
There is no common implementation detail to outline how a particular compiler does it, as it may change at any time.
Typically, compilers will try to group similar sized variables (and/or alignments) together to minimize wasted space through "gaps", but there are so many other factors involved.
structs and arrays have slightly different requirements, but that's beyond the scope of this question I believe.

Related

Is the term immutable variable just a convention?

In Rust variables are immutable by default, i.e., they don't vary but are not constants (as noted here).
Do they retain the name "variable" just by convention, or is there another reason why the term "variable" is maintained?
It should be noted that the term mut in Rust was hotly debated before stabilization with some arguing that it should be called excl or uniq. The matter is that the mut in in let mut x and &mut x are two completely different things.
let mut x declares that x is mutable, in the sense that it can be re-assigned, but also that one can take a &mut reference of it; which is best called an exclusive or unique reference. It is quite possible in Rust in some cases to mutate through a shared reference in the case of std::cell::Cell, for instance, and not all operations that require an exclusive reference involve mutation. An operation that requires an exclusive reference is simply one that would be unsafe with a shared one; Cell is designed in such a way that it is not, by strictly controlling under what conditions mutation can occur.
In theory, the two functions of let mut x could have different keywords, but they are compressed into one for simplicity. Rust could in theory be designed with mut and excl being different keywords, and allowing for let excl x, which would be a variable wherefrom one could take an exclusive reference, but not mutate.
One can also have variables that are not declared with mut, in particular in function calls. In a signature like fn func ( x : u32 ), x is not mutable, but it is variable, because it a different x can be passed every single time.
The let mut x type of "mutable" is purely a lint and, in theory, unnecessary for Rust to work — any currently working Rust program will continue to work if all non-mutable variables be made mutable. It's simply considered bad practice to do so and the compiler will warn the programmer whenever he make a variable mutable that isn't necessary to be mutable; this helps catching unintended bugs. This is absolutely not the case with exclusive and shared references, which are necessary to be distinguished and more than just a lint.
Here "variable" means "factor involved in computation" not "varying". This is from the mathematical principle where expressions like f(x) include x, a variable, as a part of the equation.
In Rust, like with other languages, you'll need variables (e.g. input) that affects how the program runs, otherwise your program would only ever behave in a singular, specific way, producing the same output each time.
You'll need to think of what variables change during processing and which do not. Those that do not need to change do not need to be declared mutable.
Regardless of if or when they change, they're still considered variables.
In C++ you'll have things like const int x which is a constant (read-only) variable, so the term can take on all sorts of specific meanings.
Is the term immutable variable just a convention?
By definition every... definition of a word is a convention, language, meaning of the word, change by time, is unique for every people that live, you can take 100 peoples and end with 100 difference definition of 1 word. That why we often start scientific paper by defining word that could be miss understand in the paper. Trying to clarify as much as possible. Rust does not differs that why we have The Reference
We have a specific section for variable
A variable is a component of a stack frame, either a named function
parameter, an anonymous temporary, or a named local variable.
A local variable (or stack-local allocation) holds a value directly,
allocated within the stack's memory. The value is a part of the stack
frame.
Local variables are immutable unless declared otherwise. For example:
let mut x = ....
Function parameters are immutable unless declared with mut. The mut
keyword applies only to the following parameter. For example: |mut x,
y| and fn f(mut x: Box, y: Box) declare one mutable variable
x and one immutable variable y.
Local variables are not initialized when allocated. Instead, the
entire frame worth of local variables are allocated, on frame-entry,
in an uninitialized state. Subsequent statements within a function may
or may not initialize the local variables. Local variables can be used
only after they have been initialized through all reachable control
flow paths.
So there is not much to add, variable in rust is clearly defined, it doesn't matter if your definition doesn't match or you find a definition of variable that doesn't match Rust one. In the context of Rust, variable is that. If you want to ask about opinion about this choice then it's off topic as opinion oriented. But, wiki definition make Rust definition quite standard both from mathematics view than computer science:
Variable (computer science), a symbolic name associated with a value and whose associated value may be changed
Variable (mathematics), a symbol that represents a quantity in a mathematical expression, as used in many sciences

Do repeated objective-c string literals use more run time memory

Putting aside good programming practises. Ill give context after.
With respect to Objective-C string literals #"foobar"
Does this structure...
NSString *kFoobar = #"foobar";
[thing1 setValue:xyz forKey:kFoobar];
[thing2 setValue:abc forKey:kFoobar];
[thing3 setValue:def forKey:kFoobar];
[thing4 setValue:ghi forKey:kFoobar];
Use more runtime memory than this structure...
[thing1 setValue:xyz forKey:#"foobar"];
[thing2 setValue:abc forKey:#"foobar"];
[thing3 setValue:def forKey:#"foobar"];
[thing4 setValue:ghi forKey:#"foobar"];
Or does the compiler sort things out and merge all instances of #"foobar" into a single reference in the TEXT section
Context...
I have inherited a large amount of source code in which most keys are expressed as string literals rather than string constants. Its not mine and the owner isn't going to pay for nice to have. Is there any point to spending time on constantifying the strings from a runtime view.
I did pass the exe through strings and it appears as if the compiler does the heavy lifting but I'm not sure.
The two are, for all intents and purposes, identical. Only one instance of a given literal string is created per compilation unit. (And, in fact, in some cases even less, since the system will attempt to combine them.)
The var kFoobar used in the first example would, if a local var, be a temporary which may never be more than a register. At most it would occupy 8 bytes in the stack frame that goes away on method exit. And the compiler would likely load a temp to point to the literal anyway, for the second case. So the code for the two examples could actually be identical.
If kFoobar were some sort of instance or global var then the pointer var itself it would of course occupy instance or global space, but it would have no other effect.
And the NSMutableDictionary does not need to make a local copy of the string (when it's used as a key) because NSString is immutable. The single copy is shared by all referencing objects.

How a programmers solve the dilemma of using old variables instead of new variables?

For example:
... some code
int sizeOfSomeObject = someObject.length();
... some code, sizeOfSomeObject is not need anymore
now I need other int variable for other action(for example, for position in some object), and i have the dilemma: create a new variable or use sizeOfSomeObject for this. In the first case I will keep readability, but lose performance. In the second case - on the contrary. What usually do programmers in this situation?
In the first case I will keep readability, but lose performance. In the second case - on the contrary.
So did you benchmark it? I suspect no, you didn't. Most modern compilers do a lot of agressive analysis during register allocation, so if the optimizer perceives that there's a variable that's not used anymore, but there's a new variable of the same type, it will just merge the two variables to the same memory region or processor register. No need to worry about performance penalties.
And anyway, don't do premature optimization (which this is). In 90% of the cases, readability is more important than "performance".
All in all, go ahead and create a new variable with an appropriate, different, descriptive name. And just for fun, compile this version and the version in which you used the same variable name, and look at the generated assembly (or bytecode, or...) - and find out that they're identical.
I would use different named variables for different things.
In terms of something like this, I don't think just one variable would cause a massive performance hit. In most languages you have the option to clear variables from memory in some way when they are no longer in use, so I would recommend doing that so that the code means something to you or others when read at a later date.
In C++, you can use blocks for objects to be destroyed as soon as they are not needed anymore:
void some_function () {
{
MyClass c;
// ... here we use c ...
}
// now c has been destroyed
{
MyClass d;
// ... here we use d ...
}
// now d has been destroyed
}
In your example (with int variables), there is no reason to worry about performance. The worst thing that could probably happen is memory for two variables being used instead of one, but (i) that's negligible and (ii) int's will probably live in a CPU register, anyway. If you really worry, use the block approach for your int example.
It depends how often such an int would be initialized. If it's not in some hugely nested for loop, most (all) programmers will go for the first. Besides, most modern programming languages have a garbage collector, which cleans up left over objects.
Decent compiler will optimize out your second variable, so that shouldn't be an issue.
That said, there are situations where variable reuse makes sense. E.g., you might have some variable that holds a generic output populated from call to some external API. According to the context and parameters passed to the API you'll process the data differently but it's probably better (more readable etc.) to reuse the same data variable.
For example, something like this:
void* data = getSomeData(params);
//process data
//change params
data = getSomeData(params);
//process data
//change params
data = getSomeData(params);

Are local variables in Fortran 77 static or stack dynamic?

For my programming languages class one hw problem asks:
Are local variables in FORTRAN static or stack dynamic? Are local variables that are INITIALIZED to a default value static or stack dynamic? Show me some code with an explanation to back up your answer. Hint: The easiest way to check this is to have your program test the history sensitivity of a subprogram. Look at what happens when you initialize the local variable to a value and when you don’t. You may need to call more than one subprogram to lock in your answer with confidence.
I wrote a few subroutines:
- create a variable
- print the variable
- initialize the variable to a value
- print the variable again
Each successive call to the subroutine prints out the same random value for the variable when it is uninitialized and then it prints out the initialized value.
What is this random value when the variable is uninitialized?
Does this mean Fortran uses the same memory location for each call to the subroutine or it dynamically creates space and initializes the variable randomly?
My second subroutine also creates a variable, but then calls the first subroutine. The result is the same except the random number printed of the uninitialized variable is different. I am very confused. Please help!
Thank you so much.
In Fortran 77 & 90/95/2003, if you want the value of a variable local to a subroutine preserved across subroutine calls, you should declare it the "save" attribute, e.g., (using Fortran 90 style):
integer, save :: counter
OR
integer :: counter
save :: counter
.
Or, if you want the "save" behavior to apply to all variables just include in the subroutine a simple
save
statement without any variables.
In Fortran 90, a variable initialization in a declaration,
integer :: counter = 0
automatically acquires the save attribute. I don't think that this was the case in Fortran 77.
This is one area in which experiments could be misleading -- they will tell you what a particular compiler does, but perhaps not what the Fortran 77 language standard is, nor what other compilers did. Many old Fortran 77 compilers didn't place local variables on the stack and implicitly all variables had the save attribute, without the programming having used that declaration. This, for example, was the case with the popular DEC Fortran compilers. It is common for legacy Fortran 77 programs that were used only with a particular compiler of this type to malfunction with a modern compiler because programmers forgot to use the save attribute on variables that needed it. Originally this didn't cause a problem because all variables effectively had the save attribute. Most modern compilers place local variables without save on the stack, and these programs frequently malfunction because some variables that need "save" "forget" their values across subroutine calls. This can be fixed by identifying the problem variables and adding save (work), adding a save statement to every subroutine (less work), or many compilers have an option (e.g., -fno-automatic in gfortran) to restore the old behavior (easy).
It seems a peculiar question -- you won't find out about "Fortran 77" but about a particular compiler. And why use Fortran 77 instead of Fortran 95/2003? Does the prof. think Fortran stopped in 1977?
To amplify on one point that #MSB made;
Fortran standards do not tell compiler-writers how to implement the standards, they are concerned with the behaviour of programs visible to the programmer. So the answer to the question is 'it all depends on the compiler'. And OP does not tell us which compiler(s) (s)he is using.
Furthermore, if you trawl back through the mists of time to examine all the FORTRAN77 compilers ever written, I am confident that you will find a wide variety of different implementations of the features you are interested in, many of them tied to quite esoteric hardware architectures.

const vs enum in D

Check out this quote from here, towards the bottom of the page. (I believe the quoted comment about consts apply to invariants as well)
Enumerations differ from consts in that they do not consume any space
in the final outputted object/library/executable, whereas consts do.
So apparently value1 will bloat the executable, while value2 is treated as a literal and doesn't appear in the object file.
const int value1 = 0xBAD;
enum int value2 = 42;
Back in C++ I always assumed this was for legacy reasons, and old compilers that couldn't optimize away constants. But if this is still true in D, there must be a deeper reason behind this. Anyone know why?
Just like in C++, an enum in D seems to be a "conserved integer literal" (edit: amazing, D2 even supports floats and strings). Its enumerators have no location. They are just immaterial as values without identity.
Placing enum is new in D2. It first defines a new variable. It is not an lvalue (so you also cannot take its address). An
enum int a = 10; // new in D2
Is like
enum : int { a = 10 }
If i can trust my poor D knowledge. So, a in here is not an lvalue (no location and you can't take its address). A const, however, has an address. If you have a global (not sure whether this is the right D terminology) const variable, the compiler usually can't optimize it away, because it doesn't know what modules can access that variable or could take its address. So it has to allocate storage for it.
I think if you have a local const, the compiler can still optimize it away just as in C++, because the compiler knows by looking at its scope whether or not anyone is interested in its address or whether everyone just takes its value.
Your actual question; why enum/const is the same in D as in C++; seems to be unanswered. Sadly there exists no good reason for this choice whatsoever. I believe that this was just an unintentional side effect in C++ that became a de facto pattern. In D the same pattern was needed, and Walter Bright decided that it should be done as in C++ such that those coming from that place would recognize what to do ... In fact, before this rather IMHO silly decision, the keyword manifest was used instead of enum for this usecase.
I think a good compiler/linker should still remove the constant. It's just that with the enum, it's actually guaranteed in the spec. The difference is primarily a matter of semantics. (Also keep in mind that 2.0 isn't complete yet)
The real purpose of enum being expanded syntactically to support single manifest constants, from what I understand, is that Don Clugston, a D template guru, was doing some crazy stuff with templates. He kept running into long build times, ridiculous compiler memory usage, etc. because the compiler kept creating internal data strucutres for const variables. One key thing about const/immutable variables compared to enums is that const/immutable variables are lvalues and can have their address taken. This means there is some extra overhead for the compiler. This usually doesn't matter, but when you're executing really complicated compile-time metaprograms, even if const variables are optimized away, this is still significant overhead at compile time.
It sounds like the enum value will be used "inline" in expressions where as the const will actually take storage and any expression referencing it will be loading the value from the memory storage.
This sound similar to the difference between const vs. readonly in C#. The former is a compile-time constant and the later is a run-time constant. This definitely affected versioning of assemblies (since assemblies referencing a readonly would receive a copy at compile time and would not get a change to the value if the referenced assembly was rebuilt with a different value).