verify CORBA SSL communication - ssl

I have two processes communicating with each other using IIOP over SSL (with JacORB). How do I verify that the message packets are actually encrypted?

You can use wireshark to record and view all traffic and inspect the packets on the network.

Related

Understanding SFU's, TURN servers in WebRTC

If I am building a WebRTC app and using a Selective Forwarding Unit media server, does this mean that I will have no need for STUN / TURN servers?
From what I understand, STUN servers are used for clients to discover their public IP / port, and TURN servers are used to relay data between clients when they are unable to connect directly to each other via STUN.
My question is, if I deploy my SFU media server with a public address, does this eliminate the need for STUN and TURN servers? Since data will always be relayed through the SFU and the clients / peers will never actually talk to each other directly?
However, I noticed that the installation guide for Kurento (a popular media server with SFU functionality) contains a section about configuring STUN or TURN servers. Why would STUN or TURN servers be necessary?
You should still use a TURN server when running an SFU. To understand diving into ICE a little bit will help. All SFUs work a little differently, but this is true for most.
For each PeerConnection the SFU will listen on a random UDP (and sometimes TCP port)
This IP/Port combination is giving to each peer who then attempts to contact the SFU.
The SFU then checks the incoming packets if they contain a valid hash (determined by upwd). This ensures there is no attacker connecting to this port.
A TURN server works by
Provides a single allocation port that peers can connect to. You can use UDP, DTLS, TCP or TLS. You need a valid username/password.
Once authenticated you send packets via this connection and the TURN server relays them for you.
The TURN server will then listen on a random port so that others can then send stuff back to the Peer.
So a TURN server has a few nice things that an SFU doesn't
You only have to listen on a single public port. If you are communicating with a service not on the internet you can just have your clients only connect to the allocation
You can also make your service available via UDP, DTLS, TCP and TLS. Most ICE implementations only support UDP.
These two factors are really important in government/hospital situations. You have networks that only allow TLS traffic over port 443. So a TURN server is your only solution (you run your allocation on TLS 443)
So you need to design your system to your needs. But IMO you should always run a well configured TURN server in real world environments.

Does exchanging SDP insecurely jeopardize the security of a peer connection? [duplicate]

i have a problem. I've developed a web-app using WebRtc for one-to-one videocall via browser using WebRtc with signalling server on node js (listening e.g. on 8181 port).
Now i would implement MITM attack. I was thinking that, wheen Peer_1 should invoke two rtc peer connection, one for the second peer (Peer_2), one to the MITM. The same thing for the second peer.
Now, i was thinking that signalling server needs to listen on another port, for each rtc peer connection received from the two peers (e.g. 8282 for Peer_1 and 8383 for Peer_2).
Am i right? I think that because signalling server's implementation is to one-to-one communication.
In this way, signalling server on port 8181 allows end-to-end communication for Peer_1 and Peer_2, on 8282 there is the signalling path for Peer_1 and the MITM, and on 8383 for MITM and Peer_2.
Am i right or not? Thanks for the support.
Man in the middle refers to interception during transmission, which WebRTC itself is secured against using DTLS and key exchange, so the weak point is usually the signaling server chosen by an application instead.
But what you describe however sounds like Man on both ends. You have to trust the service (the server) to guarantee whom you're being connected to. If that server is compromised, or either client is compromised - say by injection - then there's no guarantee whom you're talking to, since a client can easily forward a transmission to another party.

Does WebRTC allow actual peer-to-peer communication?

Is the signaling server used only the first time to establish a connection between 2 peers or is it also used to send and receive data-streams between the peers?
According to the w3c proposal:
An RTCPeerConnection allows two users to communicate directly, browser to browser. Communications are coordinated via a signaling channel which is provided by unspecified means, but generally by a script in the page via the server, e.g. using XMLHttpRequest.
So the Server is only used for signalig not for data transmission. But signaling is not limited to establishing the first connection. The signaling channel is also used for transmitting error messages, metadata such as codecs, codec settings, networkdata and keys for secure transmission.
This depends on the network configuration.
If at least one of the peers is not behind a NAT firewall, the peer that is directly on the internet acts as server, and the signalling server is no longer used after the connection is established.
If both peers are behind a NAT appliance, under certain circumstances it might be possible to negociate a client server connection between the peers, and the data is again sent directly between the two peers.
If both peers are behind a NAT firewall that is locked down, all the traffic between the peers passes through the signalling server.
Notice also that in the first two cases, a STUN server is used to establish the connection. If the full data is relayed through the server, a TURN server is used.
Look at a good explanation in the article an video on html5rocks. They claim only about 14% of all connexions need TURN, which seems a really low number to me (This corresponds to only 37% of all clients are behind a locked down NAT router).

Is STUN server absolutely necessary for webrtc when I have a socket.io based signaling server?

My understanding about STUN server for webrtc is that when the clients are behind the NAT (in most cases, if not all), the STUN server will help the webrtc clients to identify their addresses and ports. And I also read some article saying that a signaling server is needed for webrtc clients. The signaling server could be a web server, socket.io, or even emailing a url. My first question would be: is the STUN server the signaling server?
Actually now I built a very simple socket.io based service which broadcasts client's session descriptions to all other clients. So I believe the socket.io based server should have enough knowledge about the clients' addresses and ports information. If this is the case, why do we bother to have another STUN server?
The STUN server is NOT the signalling server.
The purpose of the signalling server is to pass information between the peers at the start up of the session(how can they send an offer without knowing who to send to?). This information includes the SDPs that are created on the offers and the answers and also any Ice Candidates that are created by either party.
The reason to have a STUN server is so that the two peers can send the media to each other. The media streams will not hit your signalling server but instead will go straight to the other party(the definition of a peer-to-peer connection), the exception to this would be the case when a TURN server is used.
Media cannot magically go through a NAT or a firewall because the two parties do not have direct access to each other(like they would if they were on the same LAN).
In short STUN server is needed the large majority of the time when the two parties are not on the same network(to get valid connection candidates for peer-to-peer media streaming) and a signalling server is ALWAYS needed(whether they are on different networks or not) so that the negotiation and connection build up can take place. Good explanation of the connection and streaming process
STUN is used to implement the ICE protocol, which tries to find a working network path between the two clients. ICE will also use TURN relay servers (if configured in the RTCPeerConnection) for cases where the two clients (due to NAT/Firewall restrictions) can't make a direct peer-to-peer connection.
STUN servers are used to identify the external address used by the computer on the internet (the outside-the-NAT address) and to attempt to set up a port mapping usable by the peer (if the NAT isn't "symmetric") -- contacting the STUN server will tell you the external IP and port to try to use in ICE. These are the ICE candidates included in the SDP or in the trickle-ICE messages.
For almost-guaranteed connectivity, a server should have TURN servers (preferably supporting UDP and TCP TURN, though UDP is far preferred). Note that unlike STUN, TURN can use appreciable bandwidth, and so can cost money to host. Luckily, most connections succeed without needing to use a TURN server (i.e. they run peer-to-peer)
NAT(Network Address Transformation) is used to translate "Private IP', which is valid only in LAN into "Public IP" which is valid in WAN.
The problem is that "Public IP" is only visible from outside, so we need STUN or TURN server to send back "Public IP" to you.
This process enables a WebRTC peer to get a publicly accessible address for itself, and then pass that on to another peer via a signaling mechanism
A STUN server is used to get an external network address.
TURN servers are used to relay traffic if direct (peer to peer) connection fails.
for more you can also refer from below link: https://www.html5rocks.com/en/tutorials/webrtc/infrastructure/#what-is-signaling
In your case, you need STUN. Most clients will be behind NAT, so you need STUN to get the clients public IP. But if both your clients were not behind NAT, then you wouldn't need STUN. More generally, no, a STUN server is not strictly required. I know this because I successfully connected 2 WebRTC peers without a stun server. I used the example code from aiortc, a python WebRTC/ ORTC library where both clients were running locally on my laptop. The signalling channel used my manual copy-pasting. I literally copied the SD (session description) from the one peer to the other. Then, copied the SD from the 2nd peer to the 1st peer once again.
From the ICE RFC (RFC8445), which WebRTC uses
An ICE agent SHOULD gather server-reflexive and relayed candidates.
However, use of STUN and TURN servers may be unnecessary in certain
networks and use of TURN servers may be expensive, so some
deployments may elect not to use them.
It's not clear that STUN is a requirement for ICE, but the above says it may be unnecessary.
However, signalling has nothing to do with it. This question actually stems from not understanding what STUN does, and how STUN interplays with signalling. I would argue the other 3 answers here do not actually answer these 2 concerns.
Pre-requisite: Understand the basic concepts of NAT. STUN is a tool to go around NAT, so you have to understand it.
Signalling: Briefly, in WebRTC you need to implement your own signalling strategy. You can manually type the local session description created by one peer in the other peer, use WebSockets, socket.io, or any other methods (I saw a joke that smoke signals can be used, but how are you going to pass the following session description (aka. SDP message) through a smoke signal...). Again, I copy pasted something very similar to below:
v=0
o=alice 2890844526 2890844526 IN IP4 host.anywhere.com
s=
c=IN IP4 host.anywhere.com
t=0 0
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000
m=video 51372 RTP/AVP 31
a=rtpmap:31 H261/90000
m=video 53000 RTP/AVP 32
a=rtpmap:32 MPV/90000
When both peers are not behind NAT, you don't need a STUN server, as the IP addresses located in the session description (the c= field above, known as connection data) generated by each peer would be enough for each peer to send datagrams or packets to each other. In the example above, they've provided the domain name instead of IP address, host.anywhere.com, but this can be resolved to an A record. (Study DNS for more information).
Why don't you need a STUN server in this case? From RFC8445:
There are different types of candidates; some are derived from physical or logical network interfaces, and others are discoverable via STUN and TURN.
If you're not using NAT, the client already knows the IP address which peers can directly address, so the additional ICE candidates that STUN would generate would not be helpful (it would just give you the same IP address you already know about).
But when a client is behind a NAT, the IP they think they won't help a peer contact them. Its like telling you my ip address is 192.168.1.235, it really is, but its my private IP. The NAT might be on the router, and your client may have no way of asking for the public IP. So STUN is a tool for dealing with this. Specifically,
It provides a means for an endpoint to determine the IP address and port allocated by a NAT that corresponds to its private IP address and port.
STUN basically lets the client find out what the IP address. If you were hosting a Call of Duty server from your laptop, and port forwarded a port to your machine in the router settings, you still had to look up your public IP address from a website like https://whatismyipaddress.com/. STUN lets a client do this for itself, without you accessing a browser.
Finally, how does STUN interplay with signalling?
The ICE candidates are generated locally and with the help of STUN (to get client public IP addresses when they're behind NAT) and even TURN. Session descriptions are sent to the peer using the signalling channel. If you don't use STUN, you might find that the ICE candidates generated that is tried by ICE all fail, and a connection (other than the signalling channel) does not successfully get created.

Testing TLS security in WCF-netTCPBinding

I'm developing a client/server Winforms application. Clients connect to server using internet and use WCF's netTCPBinding to talk to server.
Communicating in a secure channel is very important for me and since NetTCP binding is secured by default with TLS, it seems like I don't have to do anything. Do I?
How can I monitor the encrypted data sent/received between my client/server in localhost? I used RawCap to capture data and opened the dump file in Wireshark. But I don't know how I should check for TLS security in packets. dump file is full of unkown TCP packets (not from my software) with vcom=tunnel info for most of them.
TCP binding security element is set to Transport by default. This indicates requirement that transport session must be encypted. If you cannot establish TLS session service will reject the call.
You can use something like TCPMon which will show TLS traffic albeit encrypted. Also there is SSLDump